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Abstract

We explore the challenges in expressing and managing concurrency
in browsers on mobile devices. Browsers are complex applications
that implement multiple standards, need to support legacy behav-
ior, and are highly dynamic and interactive. We present ZOOMM,
a highly concurrent web browser engine prototype and show how
concurrency is effectively exploited at different levels: speed up
computation performance, preload network resources, and prepro-
cess resources outside the critical path of page loading. On a dual-
core Android mobile device we demonstrate that ZOOMM is two
times faster than the native WebKit based browser when loading
the set of pages defined in the Vellamo benchmark.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming - Parallel Programming

Keywords Parallel Browser, Mobile Multicore

1.

Smartphones and tablet computers are seeing tremendous adoption
by consumers. These devices are replacing laptops and desktop
machines as the platform of choice for many users. Mobility and
permanent connectivity have driven initial adoption and as the
devices become more capable, most users can accomplish their
daily tasks with ease and convenience. Many of these tasks involve
web browsing, whether using a browser or native applications that
provide a customized view of web content.

In this paper we present a browser architecture targeted to-
ward exploiting the hardware capabilities of modern mobile de-
vices: multicore parallelism and hardware acceleration, increased
network bandwidth and long network latencies. The majority of
current smartphones and tablets have SoCs with 2 or 4 cores, ag-
gressively optimized for power — power gated, voltage and fre-
quency scaled. On the network side, LTE brings 100 Mbps band-
width, however, latency continues to be high [1].

Web browser designers have to address several challenges: fast
response time for page load, even in the presence of long network
latencies [22], high performance to enable interactivity for web ap-
plications, and user interface responsiveness to provide good expe-
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rience [18]. In this paper we demonstrate how our browser archi-
tecture allows exploitation of multicore concurrency to hide net-
work latency and improve performance. When tested using the pub-
licly available Vellamo [20] benchmark suite, our ZOOMM browser
completed the run in 55 seconds, compared to 113 seconds using
the standard WebKit [23] available on a commercial HTC Jetstream
device. This is an approximately 2x improvement in performance,
demonstrating the benefits of our browser architecture.
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Figure 1. Typical browser processing steps.

Exploiting concurrency to improve browser experience is a rel-
atively new approach. Most existing browsers, such as the Web-
Kit based Chrome [4] and Safari [19], along with the Firefox [8]
browser, have a long history of development and are fundamentally
architected as sequential engines, using event driven models to help
with interactivity. Such design admits some limited parallelization;
however, full parallelism requires thread safe data structures and
synchronization between components that is hard to graft on an
existing design. These browsers have been exploiting process mul-
ticore concurrency, using on process per tab, and relying on the OS
to map processes to different cores.

As the Web is evolving, we see a remarkable increase in com-
plexity and dynamic behavior. For example, in [13] the authors
measured WebKit execution and observed that JavaScript took
around 5% of the execution time. About one year later, the frac-
tion of JavaScript execution has increased to 30%. Even more sig-
nificantly, we observe a major trend to support application de-
velopment using web technologies, such as HTMLS, CSS, and
JavaScript. Poor browser performance is one of the most important
factors hampering the move towards web apps.
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Figure 2. Browser processing times by component, excluding
network load time. Profiling results obtained using the WebKit
browser on an ARM Cortex A9 processor. Results are an aggregate
of the top Alexa 30 sites as of March 2010.

Therefore our main challenge, and the focus of this paper, is to
build a high-performance modern browser engine that works for a
realistic set of web pages and web apps. In this paper we make the
following contributions:

e A parallel browser architecture designed for fast web page load-
ing and performant web applications; our hierarchical architec-
ture exploits concurrency by overlapping the execution of ma-
jor components as well as implementing parallel algorithms for
some of the processing steps (Section 2);

e We demonstrate the use of concurrency to hide latency by dis-
covering resources ahead of time, downloading and processing
them in parallel (Section 3);

e We present a novel CSS matching and styling algorithm that
scales linearly (Section 4);

e We describe briefly a parallel JavaScript engine to improve the
performance of long running web applications (Section 5).

We briefly describe the other browser components and their in-
teraction in Section 6 and discuss performance results in Section 8.

2. A Parallel Browser Architecture

Figure 1 shows a typical browser architecture and illustrates the
steps required to render a web page. JavaScript interacts with the
page during the page load, as well as after the page is loaded to pro-
vide interactivity. Figure 2 shows the breakdown of execution time
by component, excluding the network time. Our measurements,
similar to [22] show the network time being 30%-50% of the to-
tal execution time. Given this breakdown of computation, it is clear
that in order to optimize the execution of the browser, one has to
address all components.

2.1 Design goals

Our goal is to exploit concurrency at multiple levels: parallel algo-
rithms for individual passes to speed up processing of each com-
ponent, and overlapping of passes to speed up total execution time.
In addition, we must respect the HTML and JavaScript semantics,
even during concurrent execution. The main data structure that is
used by all browser passes is the Document Object Model (DOM).
The DOM is a tree representing all the HTML elements: their
contents, relationships, styles, and positions. Web programmers
use JavaScript to manipulate the DOM, producing interactive web
pages and web apps. Most communication between browser passes
and components happens through the DOM. Unfortunately, even in
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Figure 3. ZooMM Browser Architecture. Concurrency is ex-
ploited both across components and within each component.

Rendering Engine

a concurrent browser, access to the DOM tree (constructed by the
HTMLS parser) must be serialized, to conform to the HTMLS spec-
ification [11]. This is the biggest limitation ZOOMM must contend
with, and it has influenced the design significantly. In our archi-
tecture, we manage access to the DOM through a dispatcher; most
passes have their own private concurrent data structures to allow
for greater parallelism inside components, and they send DOM up-
dates to be processed by the dispatcher. Figure 3 shows the high
level components of the architecture. We discuss the details in the
following sections.

2.2 Z00MM Browser Architecture

The ZOOMM browser consists of a number of loosely-coupled
subsystems, which are all designed with concurrency in mind.
With the exception of the browser-global resource manager and
the rendering engine, all sub-systems are instantiated once for each
page (shown as a separate tab in the user interface).

Resource Manager. The resource manager is responsible for
managing and preprocessing all network resources, including
fetching resources from the network, cache management for fetched
resources, and notifications for the arrival of data from the net-
work to other browser components. In our first implementation,
all resources are fetched in the order in which they appear, with-
out imposing any priorities. In addition, the resource manager in-
cludes other components, such as the HTML prescanner and im-
age decoder. The HTML prescanner quickly determines all exter-
nal resources in an HTML document, requests their downloading,
and, depending on the type of resources, request further processing
(Section 3.1). The Image decoder component consists of a thread
pool that decodes images for later use as they are received by the
resource manager. These operations are fully concurrent, as each
image decode is an independent task.

DOM Engine. In ZOOMM, each page (tab) instantiates a DOM
engine which consists of the DOM dispatcher, HTML parser, CSS
parsing and styling, and timers and events. The DOM dispatcher
thread is responsible for scheduling DOM updates; it serves as the
page event loop. It serializes access to the DOM and manages the
interaction between components. The rest of the browser infras-
tructure dispatches work items into the concurrent DOM dispatcher
queue, which are then handled one at a time. Work items repre-
sent browser passes as well as events like from timers events and
the user interface. The HTML parser receives incoming (partial)



data chunks for an HTML document via a DOM dispatcher work
item, and constructs the DOM tree by executing the HTMLS pars-
ing algorithm [11]. The parser adds external resources referenced
from the HTML document to the resource manager’s fetch queue.
The parser also initiates execution of JavaScript code by calling the
JavaScript engine at appropriate times during parsing. The CSS
engine is responsible for calculating the look and feel of the DOM
elements for the later layout and rendering stages. Similar to im-
age decoding, the resource manager hands off CSS stylesheets to
the CSS engine for parsing and for discovering new resources to be
requested (Section 4).

Rendering engine. Whenever the DOM or the CSS stylesheets
change, whether because the fetcher delivered new resources, the
HTML parser updated the DOM, or as a result of JavaScript com-
putations, this change needs to be reflected on the screen so that the
user can view and interact with it. The layout engine is responsible
for transforming the styled DOM tree into geometry and content
which the rendering engine can turn into a bitmap (Section 6). Ul-
timately this bitmap is displayed on the screen by the user interface
as a viewable web page. Normally, the layout and rendering engine
takes a snapshot of the DOM information it needs and performs the
rest of the work asynchronously; however, it can also be invoked
synchronously when JavaScript makes use of APIs that query lay-
out information.

JavaScript Engine. The ZOOMM JavaScript engine executes all
JavaScript code. The engine’s novel design is outside the scope of
this paper. Instead, we focus on the integration with the rest of the
browser architecture (Section 5).

User Interface. The ZOOMM browser is currently available on
Android, Linux, and Mac OS X platforms, and is mainly imple-
mented in platform agnostic C++. For concurrency, we use a cus-
tom asynchronous task library, that provides similar functionality to
Intel Thread Building Blocks [16]. On Android, a thin Java wrap-
per is used to create the user interface. User interactions such as
touching a link on the display are translated into JNI method calls,
which ultimately create work items in the DOM dispatcher. Draw-
ing to the display is performed using the Android NDK, which pro-
vides direct access to Android bitmaps. On Linux and Mac OS X,
a similar wrapper is implemented in C++ using the Qt interface
toolkit [15]. Although our deployment targets are Android devices,
the Qt implementation allows much easier debugging and testing
on desktop based machines, and the ability to evaluate concurrency
beyond what Android devices offer today.

In the following sections, we discuss some of ZOOMM’s com-
ponents in more detail.

3. Aggressive Resource Prefetching

Mobile devices commonly experience high latency when request-
ing the resources that form an HTML document. In order to reduce
the overall time taken to load a page, fetching all of the dependen-
cies from the network as early as possible is very important. This
section describes the techniques we employ to prefetch resources
discovered in HTML and CSS content.

3.1 HTML Prescanning

Due to idiosyncrasies in the HTMLS5 specification, the HTMLS5
parser must wait for <script> blocks to finish executing before
it can continue parsing. Thus, if a web page references an exter-
nal resource after a script element, fetching the resource cannot be
overlapped with the waiting. Potentially, this can delay the com-
pletion of page loading. The Mozilla Firefox browser [8] mitigates
such situations by speculatively parsing ahead of script blocks to
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discover new resources. (It may then be forced to throw away some
of that work if, for example, JavaScript inserts new content into the
DOM tree via the document .write () APL) Once resources
are discovered, network latency can be masked by requesting mul-
tiple resources to be fetched in parallel. This strategy also helps to
utilize all available bandwidth. In either case, it reduces the overall
time spent waiting for resources to arrive.

In ZooMM, we favor concurrency to achieve the same goal by
running an HTML prescanning component in parallel to a (non-
speculative) HTML parser. The main objective of the HTML pres-
canner is to quickly determine all external resources in an HTML
document and trigger their fetching from the network. The most
commonly referenced resources are images, CSS stylesheets, and
JavaScript sources. In addition, stylesheets and JavaScript sources
can themselves reference further external resources. Furthermore,
the prescanner obtains all id, class and style attributes used
in the document.

As network packets of an HTML document arrive, they are
given to the prescanner and the actual HTML parser independently.
The prescanner is able to run ahead of the HTML parser because it
only has to approximately parse HTML in order to find resources,
thus skipping the complex DOM tree construction phase. More
importantly, the prescanner does not have to wait for the execution
of <script> blocks to finish.

The processing of prefetched resources works as follows. Im-
ages are fetched concurrently with the rest of the page processing.
Once downloaded, image data is given to a thread pool for decod-
ing, concurrently. The decoded image is added to the DOM dis-
patcher queue, which updates the corresponding img tree node.
Then, the image is removed from the set of pending images.

3.2 CSS Prefetching

CSS stylesheets are dispatched to a thread pool responsible for
parsing CSS concurrently. If a CSS rule contains further external
resources, the parser makes a decision whether to initiate prefetch-
ing for them, based on the likelihood that they are actually refer-
enced in the HTML document.

Itis crucial to download just enough of the referenced resources.
Downloading too little means that new resources are discovered
only when styling the DOM tree later on, which incurs additional
latency penalties. It is common practice among websites to refer-
ence many more resources than are actually needed for any given
document, for example by using a site-wide common style file.
Downloading all resources invariably consumes too much band-
width and slows down page loading.

In ZooMM, the CSS parser employs the id and class at-
tributes discovered by the HTML prescanner to determine if a rule
is likely to be matched. If all of the attribute values referenced in
a CSS rule selector have been seen by the HTML prescanner, we
assume that the rule will match at least one DOM tree element, and
initiate downloading its resources. This heuristic is simple, but ef-
fective (Table 1). Note that wrong decisions here do not affect cor-
rectness; any missed resources will be discovered during the styling
phase, at the cost of additional latency.

3.3 Limitations

Z0OOMM’s prescanner is limited to discovering resources which can
be determined without having to execute JavaScript. Furthermore,
the CSS parser may erroneously initiate prefetching of a resource
(false positive). For example, this occurs if all class IDs were
detected by the HTML prescanner individually, but in the HTML
document they do not appear nested in the same way as described
by any CSS rule. The CSS prefetching algorithm does not generate
false negatives, except when JavaScript dynamically changes the
DOM tree.



4. The CSS engine

Cascading Style Sheets (CSS) is a language used to describe the
look and formatting of web sites, thus separating the presentation of
a document from its content. Each style sheet consists of an ordered
collection of rules with the following format:

selector {
property:: value;

propertyy: value;

For example, the following CSS code makes the browser render
all <cite> elements whose direct ancestor is a <p> element using
a white foreground:

p>cite { color: white; }

It is common for web sites to use several thousand such rules.
ZooMM’s CSS engine performs three jobs: CSS resource

prefetching, CSS parsing, and DOM styling. We describe CSS

prefetching in Section 3.2. We now describe the other two.

4.1 Concurrent CSS Parsing

During CSS parsing, the CSS engine reads the CSS code and
creates a collection of data structures that we call in-memory rules.
CSS code can be embedded in HTML or linked as separate files,
perhaps stored on different servers. Traditional CSS engines
like the ones in WebKit or Firefox— parse CSS sequentially in
the main browser thread. Thus, if a page uses embedded CSS, the
HTML parser cannot parse the rest of the HTML document until
the CSS engine has parsed the style element in the document’s
header. Moreover, if a page uses several CSS files, they will all
be parsed sequentially, even though idle CPU cores are available.
Such serialization is particularly noticeable in sites using large CSS
files; for example, the main CSS file for BBC News' is 250 KBytes
in size.

Z0OMM’s CSS parser is re-entrant so that it is possible to
invoke it from asynchronous, concurrent tasks. During page load,
Z00MM’s HTML parser spawns a CSS parsing task for each style
element in the DOM tree. Similarly, the resource manager spawns
a CSS parsing task for each CSS file it receives. Effectively, this
means that a CSS parser instance executes as soon as any new
CSS is available, regardless of whether the HTML parser or other
instances are already executing. However, ZOOMM must ensure
that the total order of the in-memory rules is equal to the one
that would have been generated by a sequential CSS engine. Each
parsing task receives a unique, sequential ID that is later used to
recreate the ordering of the style sheets in the original document.

4.2 Parallel DOM Styling

DOM styling is the means by which the CSS engine uses in-
memory rules to determine the style of the nodes in the DOM tree.
For each node, the CSS engine must first find all the rules whose
selectors match the node, or rule matching. Rule matching often
returns many — and usually conflicting — rules per node. Using
cascading, the CSS engine assigns weights to rules and chooses
only the ones with the greatest weight. During style creation, the
CSS engine creates the style data structure using the rules selected
by the cascading algorithm and attaches it to the node.

A key insight is that it is possible to concurrently style several
DOM nodes as long as certain dependencies are enforced, and we
developed a new parallel DOM styling algorithm that leverages it.

Algorithm 1 shows that the CSS engine uses two types of tasks
per node to style the DOM tree: matching tasks and styling tasks.

Uhttp://www.bbc.co.uk/news/
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Algorithm 1 Parallel DOM Styling Algorithm

1: function STYLENODE(node, ruleset)

2 finalRuleset < Cascade(ruleset, node)

3 node.style < BuildStyle(finalRuleset, node)
4: end function

5:

6: function MATCHNODE(node, ruleset, styling)

7 child <+ node.FirstChild ()

8 while child # NULL do

9: r < NewRuleset()

10: ts < NewTask(StyleNode(child, r))
11: tm <+ NewTask(MatchNode(child, r, ts))
12: tm.SetSuccessor(ts)

13: styling.SetSuccessor(ts)

14: tm.Spawn()

15: ts.Spawn()

16: child < child. NextSibling ()

17: end while

18: Match(node, ruleset)

19: end function

20:

21: function STYLEDOMTREE(tree)

22: root < tree.root()

23: ruleset <— NewRuleset()

24: ts < NewTask(StyleNode(root, ruleset))

25: tm < NewTask(MatchNode(root, ruleset, ts))
26: tm.SetSuccessor(ts)

27: tm.Spawn/()

28: ts.Spawn()

29: WaitForTasks()

30: end function

-» Task dependence
A Matching Task B Styling Task

AN
Al A

() (b)

Figure 4. DOM tree (a) and corresponding task DAG (b).

O DOM node

Matching tasks start by spawning new matching and styling tasks
for each of the node’s children. Then, they rule-match the node.
Their output is a set of rules that are applicable to the node. They
spawn children tasks before they do the actual work because styling
tasks are fully independent, and it is desirable to have as many of
them executing as possible.

Styling tasks apply the cascading algorithm and create the final
style data structure for each node. A styling task must satisfy
two dependencies before it can execute. First, it can only execute
after the matching task working on the same node has completed
execution, since the cascading algorithm uses the rules selected by
the matching task. Second, a styling task working on a node can
only execute after the styling task working on the node’s parent has
completed execution. This is because some style properties of a



node may be inherited from its parent. By using two types of tasks,
our algorithm can rule-match a node before its parent is styled.
Figures 4a and 4b show a DOM tree and its corresponding task
DAG, respectively.

This basic version of the algorithm limits style sharing to parent-
child sharing. However, we subdivide style objects into substyles
containing related properties, and allow sharing at the substyle
level, which increases the degree of available sharing (see Sec-
tion 6.1). For example, if a child node uses the same font properties
as its parent, then they can share the font substyle. To add support
for sibling style sharing, the matching task must speculate whether
a child node may be able to share its style with a previous child
node before spawning tasks for it. If the answer is yes, it does not
spawn new tasks for the second child.

Matching tasks can be expensive because the rule matching
algorithm must decide whether each selector applies to the node
or to any of its ancestors. This may require traversing the tree
all the way to the root. For example, rule-matching BBC News
requires more than 400,000 of such walks. WebKit saves 90% of
them by using a Bloom filter [3] that stores information about the
ancestors of a DOM node. In Safari 5.0, a Bloom filter instance
amounts to a space overhead of 4 KB. ZOOMM cannot use the same
data structure because it would require a new Bloom filter instance
per matching task. Instead, ZOOMM utilizes matching bitmaps.
Matching bitmaps are fixed size (64 byte) and record whether an
ID, a class or a tag has been seen in one of the node ancestors.

Section 3.2 describes how ZOOMM uses element id, tag and
class attributes to predict whether an image referenced in the
CSS file should be prefetched. These attributes are stored in a
database that sorts them according to the number of times each
one appears in the document. Before the rule matching algorithm
starts, the CSS engine assigns a bit to each of them in a bitmap data
structure. If the number of ids and classes is larger than the bitmap
size, a single bit can be assigned to multiple items. During rule
matching, each matching task receives a matching bitmap from its
parent. Matching tasks use the matching bitmap to filter out rules
that could never match: if the bit corresponding to a tag, id or class
is not set, that means that no ancestor has it. Therefore, there is no
need to traverse the tree. After matching is completed, matching
tasks add their node’s id, class, and tag to the bitmap and send a
copy to their descendants.

5. JavaScript Engine

The ZoOMM browser includes a JavaScript engine that is optimized
for parallel execution. In particular, our engine expoits concurrency
by compiling multiple scripts in parallel, as well as compiling
scripts asynchronously with the rest of the browser passes. To
achieve this, the JavaScript engine uses a thread pool and the JIT
compiler uses separate state for each script.

Due to JavaScript semantics, execution of scripts is performed
sequentially in the main engine thread. When the HTML parser
or the DOM dispatcher (e.g., for user interface events) requests
the execution of a JavaScript script that has not been compiled
already, compilation is initiated. In either case, the engine waits
for the compiled result, and then executes the script. The goal of
the engine is to use available resources on the platform to improve
the generated code for JavaScript execution.

For adaptive compilation and execution of the JavaScript code,
the JavaScript engine consists of an interpreter, and two compilers:

Interpreter. The interpreter is used for fast startup execution of
small JavaScript scripts. It is mainly invoked on page load, since
many pages have inline JavaScript code that is executed only once
and mainly calls into the browser bindings.
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Light compiler. This compiler is optimized for page load and
generates executable code for infrequently reused JavaScript code.
‘We have a parametrized threshold that triggers the invocation of the
light compiler.

Full compiler. This compiler is optimized for interactivity and
web apps, and generates higher quality code for heavily reused
JavaScript code. The slower code generation of the full compiler
is amortized between multiple runs of the reused code. Compared
to the light compiler, this compiler achieves significant speedup for
iterative web apps. For example, using this compiler, an N-body
simulation web app runs six times faster than the same application
compiled with the light compiler.

A full description and evaluation of the JavaScript engine is
outside the scope of this paper.

6. Layout, Rendering, and Display

Once styles have been applied to the DOM tree by the CSS engine,
it is necessary to use this information to produce a bitmap image
that will be displayed to the user. This job is performed in four
steps:

1. The layout tree is created or updated by the page event loop.
This tree captures all the information from the DOM that is
relevant for the subsequent steps; each node represents a visual
element on the web page. Only this step needs to run on the
page event loop; after the layout tree is created, the remaining
steps are independent of the DOM, and can run concurrently
with tasks like JavaScript.

2. The layout engine is responsible for solving the system of con-
straints expressed by the layout tree’s styles and structure; it im-
plements the CSS layout algorithm [6]. Ultimately it annotates
each layout tree node with width, height, margins, and other
spatial information which determines how it will be displayed
on the screen.

3. The rendering engine walks the annotated layout tree nodes and
draws them, along with any text or other content they may con-
tain, into a bitmap. The resulting bitmap is again independent
of the previous steps, and further manipulation of it can happen
concurrently.

4. The user interface, running on its own thread to assure respon-
siveness to user input, accepts the bitmap produced by the ren-
dering engine and displays it on the screen. The user interface
is also responsible for scrolling; once a bitmap has been dis-
played, the user can scroll freely even if all of the other threads
in the system are busy.

Layout, rendering, and display thus involve three different tasks
in a pipeline-like structure, although as we discuss below, there
are subtleties that may increase its complexity. This arrangement
isolates both the page event loop and the user interface from the
delays caused by layout and rendering, allowing JavaScript and
interactive events like scrolling to run as fast as possible.

In the following subsections we explore the detailed design of
each step in this process.

6.1 Layout Tree

The layout tree’s purpose is to decouple layout, rendering, and
display from the page event loop, allowing JavaScript and other
types of tasks to run freely. The main obstacle to this goal is
JavaScript’s ability to change DOM nodes and CSS rules at will;
these changes may cause inconsistent layout results or rendering
artifacts if they are not protected against.

The CSS layout rules do not create a one-to-one mapping be-
tween DOM nodes and layout nodes; this means that a distinct tree



must be created for the layout nodes” regardless of our concurrency
goals. To eliminate any possible interference from JavaScript, we
augment the information normally found in the layout tree in such
a way that there is no longer any need to refer back to the DOM or
the CSS rules.

We use different strategies for different types of information, as
follows:

CSS Styles. Because of their large size, we divide style objects
into a number of substyles, each containing properties that usually
vary together. Each substyle can be shared with many style objects
using copy-on-write semantics; a style object thus consists of a set
of references to potentially-shared substyles. In addition to greatly
reducing memory usage, this approach has the advantage that we
do not need to worry about modification to styles when building
the layout tree; as long as our style object has a reference to a
substyle, we know that it will remain unchanged, regardless of any
concurrent style changes that may occur.

DOM Text Content. 1t would be feasible to use a copy-on-write
approach for text as well, but because text content was so small
compared to other types of data on our test sites, we simply copy
the text into the layout tree.

DOM Image Content. Images are immutable in ZOOMM, so all
we need to place in the layout tree is a reference.

Canvas Elements. Canvas elements need to be treated specially
because their contents are often changed rapidly by JavaScript.
Given that they contain image data that is fairly expensive to copy
and that the old contents of a canvas element are only occasion-
ally needed, a copy-on-write approach is not appropriate here. In-
stead, it proves cheaper to copy the contents of the canvas into a
corresponding buffer in the layout tree. These buffers are reused to
minimize memory allocation, and we use dirtiness annotations in
the DOM to avoid copying if the canvas element contents have not
changed.

An alternate strategy would be to avoid copying the canvas
contents at all and simply paint whatever contents the canvas has
at render time; this has the disadvantage that tearing will be visible
to the user. Effectively, copying the canvas contents amounts to
double buffering.

HTML Attributes. Only a small subset of HTML attributes mat-
ter to layout; these are presentational values like border. In most
cases these map directly to CSS properties, and when these at-
tributes are set on a node we translate them into changes to that
node’s style. Certain presentational HTML attributes have no CSS
equivalents; for these, we make use of special ZOOMM-only CSS
properties.

One interesting case concerns the HTML height and width
attributes; although in many cases these are equivalent to the corre-
sponding CSS properties, for canvas elements the HTML attributes
control the dimensions of the canvas’s internal coordinate system,
while the CSS properties control the scaling of the canvas on the
page. This difference requires that we record both values in the
style for canvas elements.

Conceptually, a new layout tree is generated whenever the DOM
or CSS are updated. This is usually triggered by JavaScript, but
may also be the result of the arrival of new resources. However, in
practice we do not need to generate a new layout tree unless we are
going to use it, so we defer the work until either we reach the point
of displaying the previous tree and detect that the page’s contents
have changed, or we must compute layout to determine a value that
JavaScript is requesting.

2 Although in some implementations, a single node can serve both purposes
when a one-to-one mapping is possible.
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We have found that in practice, JavaScript often makes numer-
ous references to values computed by layout during page load. Cur-
rent browsers typically only allow one layout tree to exist at a time,
synchronizing it with the DOM according to some policy. This is
not a problem if layout blocks the page event loop anyway, but in
Z0OOMM we run layout asynchonously; if we were forced to wait
for layout and rendering to finish to update the layout tree, we might
block the event loop for the time required to run layout twice — one
time to be able to update the layout tree, and a second time to ac-
tually run the layout algorithm. We avoid this problem by allowing
multiple layout trees to exist at the same time, and running layout
in the page event loop thread if up-to-date layout information is not
available when JavaScript requests it.

To minimize the costs of copying or updating our layout trees
— indeed, these are the same operation for us — we treat the layout
trees as an immutable data structure. Information that is likely to
change frequently is factored out of the layout tree nodes and stored
in separate data structures at the root; the nodes themselves only
store keys or indices into these data structures. This arrangement
means that we often only need to update a small portion of the
overall data in the layout tree when something changes; though we
only handle certain common cases at present, this approach can
be taken quite far. As a concrete example, we store the contents
of canvas elements in a list, while canvas nodes in the layout tree
contain only an index into this list. When the canvas contents are
updated, the new layout tree can share all of the layout nodes with
the old tree; only the list of canvas contents must be duplicated.’
Note that there are some data structures in the layout tree that are
not truly immutable until the layout algorithm has already been run;
we take note of whether this has happened and decide whether to
copy those data structures on that basis.

Creating or copying the layout tree is the only step that must
take place in the page event loop. This prevents JavaScript and CSS
from running concurrently and ensures that the resulting layout
tree is consistent. Once the layout tree is ready, we transfer its
ownership to the task responsible for layout and rendering and the
event loop can continue processing without any further delay.

6.2 Layout Engine

When the layout engine, running concurrently with the page event
loop, receives a layout tree, it consults metadata stored in the layout
tree to decide whether to perform CSS layout [6]. This information
is stored as part of the process of creating or updating the layout
tree, since inferring it after the fact is much more difficult.

Currently we use coarse-grain dirty bits to record which aspects
of the page have changed, allowing us to determine whether a
layout is necessary. In some cases, such as when only images or the
contents of canvas elements have changed, the information in the
layout tree will be up to date and there will be no need to perform
layout at all. In all other cases we currently run a full layout. It
is possible to determine the scope of the effect of particular DOM
changes and only run the layout algorithm on the subtrees affected;
we leave this for future work.

The particular algorithm used to compute layout is orthogonal
to our asynchronous layout approach. We use asynchrony to move
layout and rendering out of the critical path of the page event loop;
a parallelized layout algorithm complements our current design by
reducing the delay until layout changes are visible on the screen.
Additionally, JavaScript queries like those we mention above some-
time force layout to be performed in the page event loop; this case

3 Indeed, using standard immutable data structure techniques, only updating
part of the list is necessary. Our current implementation uses a coarser
granularity, however.



would also benefit from a parallelized layout algorithm. We leave
this extension for future work.

Regardless of the layout implementation, after the layout engine
is finished each node in the layout tree is annotated with spatial
information such as its final x and y position and layer. This
annotated layout tree is then transferred to the rendering engine.

6.3 Rendering Engine

The rendering engine also runs concurrently with the page event
loop, after the layout task has executed. It walks the annotated lay-
out tree and paints the contents of the page into a bitmap. We use
a simple sequential algorithm that performs rendering according to
the CSS standard [6]. It would be possible to use many parallel
walks over the layout tree to render into independent tiles simulta-
neously, but we leave an investigation of this approach for future
work; because it does not block the page event loop, rendering is
currently not a bottleneck in ZOOMM.

Beyond parallelism, an additional advantage of the layout tree
design in ZOOMM is that we can treat layout and rendering as a
service which is shared between web pages. Since layout trees do
not refer back to the DOM or CSS they were constructed from,
it’s no problem for the same layout and rendering thread to handle
all layout trees regardless of their source. This means that expen-
sive, finite rendering-related resources like bitmaps only need one
instance per browser window.

We reuse the same bitmap as long as change to the environment
like a resize of the browser window does not invalidate it. This
greatly reduces ZOOMM’s memory requirements, but it means that
we must ensure that the bitmap is copied into graphics memory
before any further rendering is performed. This is accomplished by
temporarily transferring control of the bitmap to the user interface.
When the user interface finishes processing the bitmap, rendering
is complete and the layout and rendering thread notifies the page
event loop that it is ready to accept any updated layout trees that
become available.

6.4 User Interface

The user interface runs on its own thread. The layout and render-
ing thread transfers control of the bitmap representing the current
page contents to the user interface, and then blocks while the user
interface uploads the bitmap into graphics memory. This task is per-
formed in the user interface thread only because of platform-related
restrictions on which thread must perform this action. After this is
complete, the user interface thread notifies the layout and rendering
thread that it may continue working, and displays the new content
to the user.

The user interface thread is also responsible for processing
events caused by user interaction. Most events are handled by
JavaScript; these are packaged and delivered to the appropriate
page event loop. However, certain events can be handled by the
user interface directly. For example, because a page’s contents are
stored in graphics memory, the user interface can scroll the contents
directly. This means that even if the page event loop or layout and
rendering thread are busy, scrolling continues to be smooth and
responsive.

7. Related Work

There is a wide variety of existing studies on browser parallelism
and concurrency in the literature. We summarize the most relevant
of these here.

Process-Per-Page Browsers. Chrome [17], the WebKit2 [24] en-
gine, and Gazelle [21] exploit parallelism by using separate pro-
cesses for the event loop of each open page, essentially delegat-
ing the responsibility of using multiple cores to the OS. This is
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simple to implement and provides isolation between different sites.
However, processes are heavyweight in terms of both memory and
startup overhead, and page-level parallelism doesn’t address the
needs of mobile browsers, where single-page performance is often
inadequate and users do not open many tabs at once.

Chrome additionally performs display in a separate process [5];
layout and rendering take place in the page event loop, and the
resulting rendered segments of the page are transferred to a separate
process, allowing the segments to be displayed and scrolled without
blocking the event loop. In contrast, our model moves layout and
rendering almost entirely out of the page event loop, allowing more
time for handling Ul events and executing JavaScript.

OP and OP2. Girier et al. [10] developed browsers designed for
security and isolation. The OP and OP2 browsers use a per-page
multiprocess architecture that places several browser components,
such as networking, in different processes. They observed speedups
from the ability to overlap operations at the process level. While a
multicore/parallelism study was not their primary goal, the obser-
vations made are a good indication of the potential of overlapping
browser components. We improve on their multiprocess model by
adding algorithm-level parallelism and separating out more compo-
nents, such as layout and rendering, which can run asynchronously
in parallel with other activity on the page.

Adrenaline. Mai et al. [12] speed up page processing by splitting
the original page in minipages. Each minipage contains only a
subset of the CSS and HTML of the original page. This makes CSS
and layout faster because the DOM trees have fewer nodes and the
style sheets have fewer rules. Additionally, this work can happen
in parallel with JavaScript, which runs in a process associated with
the main page; Adrenaline is the only other browser we are aware
of that allows this. However, Adrenaline must merge other mini
pages into the master page if JavaScript makes any reference to
their content, preventing any further parallelism for that mini page.
In contrast, JavaScript’s DOM access in our browser is unrestricted
and does not penalize parallelism or trigger the overhead of page
merging. Our method also does not require server-side support as
Adrenaline does.

The Berkeley Parallel Browser Project. Meyerovich and Bodik
have looked at the problem of parallelizing the CSS and layout
algorithms [13]. Their initial results are very promising, offering
80x speed-up in some instances. However, their CSS algorithm
only supports a subset of the CSS standard, and it is a standalone
component that only performs selector matching. ZOOMM’s paral-
lel styling algorithm is CSS 2.1 compliant and combines parallel
matching with parallel cascading. Their study also addresses the
problem of parallel layout. Their work is orthogonal to ours — we
address performing layout entirely outside of the page event loop
and could use their parallel algorithm.

Although they target only a well-behaved subset of the specifi-
cation, their experience shows that browser processing algorithms
can be made highly concurrent if one could modify the standard.
We expect that many of their optimizations would be beneficial
if combined with our approach, although we leave this for future
work.

Parallel CSS in Firefox. Badea et al. [2] profiled Firefox and
found that, in most cases, rule matching a node requires rule match-
ing all the node’s ancestors. They propose using helper threads to
speed up matching of ancestor selectors. In their implementation,
each helper thread is assigned a number of ancestors to process.
WebKit and ZOOMM avoid most of those traversals by using bloom
filters and matching bitmaps, respectively, addressing this issue in
a sequential fashion.
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Figure 5. Gantt chart of loading the Yahoo! web page with ZOOMM from a mirror: concurrency among components are visible through

overlapping bars; intra-component concurrency is not shown here.

Prefetching. There is a long history in web browsers of resource
prefetching. A variety of schemes has been developed over the
years, with and without server support, with and without prefetch
directives, augmented with features like learning components, etc..
We refer to Duchamps and Fisher et al. for summaries [7, 9].

The HTML parser in Mozilla Firefox 4 and later supports
speculative parsing [14]: instead of waiting for the execution of
JavaScript to finish, the parser scans ahead for external resources
(scripts, style sheets and images) and downloads them. The ap-
proach is different than in ZOOMM, in that Firefox also continues
to construct the DOM tree. This work is necessarily speculative in
nature, since the currently executing JavaScript can alter the parsing
context (e.g., by emitting new content via document .write ()).
In that case, the speculative work has to be undone. In ZOoOMM, we
chose to make the HTML prescanner independent from the parser,
thus simplifying the architecture of both. Furthermore, it allows
the prefetcher to be moved into a separate thread, thereby hiding
any overhead incurred as long as enough compute resources are
available. However, our approach precludes speculative construc-
tion of the DOM tree. As future work, it would be interesting to
compare the benefits of the Firefox approach in more detail to
Z0OMM’s approach, and investigate whether it can be incorporated
into ZOOMM’s architecture.

Compared to Firefox and earlier approaches, the novelty in our
approach lies not in the prefetching itself, but in the additional
funneling of information from the HTML prefetcher to the CSS
parser, thereby allowing resources referenced in CSS documents to
be requested ahead of time.

8. Experimental Results

In this section we present data to demonstrate the benefits of con-
currency with respect to hiding the network latency, parallel CSS
styling, and image decoding. We show two sets of data, one set to
demonstrate effectiveness on a mobile platform (an HTC Jetstream
device using a dual-core Snapdragon processor) and another set (on
an Intel 6-core Xeon) that demonstrates the scalability of our design
targeted at future mobile devices.

Performance. 1In order to test the overall performance of the
Z0OOMM browser, we used the publicly available Vellamo [20]
benchmark suite. Vellamo tests the overall page load time, from
the initial fetch to showing pixels on the display for a set of web
sites: CNN, BBC, Yahoo!, Guardian, New York Times, Facebook,
Engadget, and QQ (also shown in Table 1). Vellamo uses the user
agent of a desktop browser to ensure that the HTML is not sim-
plified for a mobile device. Pages are loaded and displayed twice:
first time with a cold cache, and second using the browser cache.
We measured Zoomm against the standard WebKit-based browser
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included with Android on the HTC Jetstream device. The Vellamo
test was performed using a local network proxy to ensure that the
network conditions were consistent between both browsers. Over-
all, the ZOOMM browser completed the test run in 55 seconds,
while WebKit completed it in 113 seconds. Figure 6 shows the
time for loading each page in the two browsers. The load times
are the average over 5 runs of the non-cached round. While there is
a large variability between sites, ZOOMM is always faster, with an
overall improvement of approximately 2x, demonstrating the ef-
fectiveness of the techniques uses in ZOOMM to improve browser
performance.

Zoomm - -

0 10 20 30 40 50 60
Seconds

B CNN BBC ®Yahoo M Guardian NYT Facebook Engadget QQ

Figure 6. WebKit vs. Zoomm page load time on HTC Jetstream

Concurrency. Figure 5, illustrates the concurrency among the
major components in ZOOMM while loading the Yahoo! web page
from a mirror over a high-bandwidth/high-latency network con-
nection representative of future 4G networks (Gigabit ethernet
with artificial 50ms network latency). In addition, there also intra-
component concurrency which is not shown; for example, image
decoding and CSS styling internally run with multiple threads.

The “Network Delay” row indicates times when the DOM dis-
patcher loop sleeps because there are no events (network activity,
user interaction, timers, etc.) to process due to waiting for exter-
nal resources. The first network delay is between the request of the
HTML document and the first packets arriving. Then the HTML
parser processes the packets and kicks off execution of JavaScript
code. The HTML parser waits with further processing until the
JavaScript finishes. However, in parallel, further packets arrive and
images are being decoded. We note that even for a single run,
styling and rendering happens twice, the first time triggered by a
call to the getComputedStyle function from JavaScript.

Compared to the 2010 WebKit numbers in Figure 2, JavaScript
has become more prevalent. Also, ZOOMM’s JavaScript engine is
comparatively less mature than WebKit’s and hence shows up more
prominently in the chart.

Prefetching. Figure 7 shows the speed-up gains from early re-
source discovery on two different networks: the 4G Verizon net-
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Figure 7. Prefetching speed-up on 4G and WiFi networks (higher
numbers are better). The bars show the percentage reduction in
page load time when prefetching is enabled in the ZOOMM browser
vs. a baseline page load without prefetching enabled.

work through a MiFi device, and a WiFi wireless network. In both
cases, devices were connected wirelessly to these access points.
The pages are fetched from the real servers on the Internet. Experi-
ments were run with a cleared cache. The speed-up is measured on
total page load, with and without prefetching enabled. While there
is significant variability in the results due to Internet latencies, we
improve page load time in all cases, up to 58% (25% geometrical
mean).

Table 1 shows the number of resources that are successfully
requested by the prefetching stage, and the number of resources
are missed due to use of JavaScript. Note that resources would also
count as “missed” if the prefetching algorithms would fall behind
the actual HTML and CSS parsers. However, we found this to be
never the case in all our experiments. The prefetching components
are fast enough to always finish much earlier than the parsers.

Despite the heuristic nature of some of the prefetching deci-
sions, they are quite accurate: in our experiments, 80-95% of
all externally referenced resources in a document are prefetched
correctly, with only a small error rate. Due to bandwidth and
power considerations, our heuristics are still conservative, i.e., they
rather prefetch too little than too much: “Missed Prefetch” (not
prefetched, but needed for rendering the web page) numbers are
higher than “Mistaken Prefetch” (prefetched, but not needed for
rendering).

CSS Performance. In Figure 8 we present scalability results for
the parallel CSS algorithm. The algorithm scales well for complex
sites, with large numbers of rules and many DOM nodes. Because
the testing machine has 6 hyper-threaded cores, we observe lim-
ited scalability beyond 6 cores. Our measurements indicate that
Z00OMM spends 97% of CSS styling time executing matching tasks,
and only 3% executing node styling tasks.

Table 2 shows the accuracy of ZOOMM’s matching bitmaps
technique for a set of websites. On average, ZOOMM avoids 90%
of the walks to the root of the DOM tree, with only 0.024% of
false positives. False positives occur because matching bitmaps do
not record the order in which labels and ids are encountered. For
example, suppose ZOOMM wants to know whether the following
rule applies to a <p>node: hl>h2 p {color: red}.

Assume that the matching bitmap indicates that both <h1> and
<h2> are <p>’s ancestors. ZOOMM’s matching algorithm must
traverse up the tree to check whether there is a <h1> node that
is a direct ancestor of a <h2>’s. If that is not the case, then it is
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Figure 8. Large and complex web sites benefit from the scalability
of the parallel DOM styling algorithm, here running on an Intel
Xeon with 6 hyper-threaded cores. The first five web sites were
retrieved using a desktop user agent, making the HTML more
complex. The last five web sites were retrieved using a mobile
user agent, where the server sends simpler HTML for display on
a small mobile device. Desktop-based HTML experiences larger
improvements in performance due to the size of the content.

Site % Avoided Walks % False Positives
CNN 88.94 0

BBC 88.02 0.021

Yahoo! 86.83 0.080

Guardian  94.19 0

NYT 98.74 0.035

Engadget 82.77 0

QQ 92.46 0.031

Average 90.28 0.024

Table 2. Accuracy of the matching bitmaps technique for the
Vellamo benchmark with desktop user agent. Higher number of
avoided walks is better, and lower number of false positives is bet-
ter.

a false positive. Note that false positives do not cause the page to
render incorrectly, they just waste CPU cycles.

Parallel Image Decoding. Figure 9 shows the scalability of of-
fline image decoding when increasing the number of threads in the
shared thread pool used for CSS prefetching and image decoding.
In the figure we average the total time over 5 runs on a test page that
consists of 36 images of 1.6 Megapixels each. These plots demon-
strate that with enough work, we can take advantage of multiple
cores for image decoding. However, other factors, like memory and
network bandwidth, as well as server latency, and number of allow-
able connections per server, can lead to diminishing returns. In our
experiment, we did not observe speed-ups beyond six cores, due to
the hyper-threaded nature of our test CPU, and the browser compu-
tations unrelated to image decoding.

9. Conclusions

In this paper we presented ZOOMM, a parallel browser engine de-
signed to exploit multicore concurrency. We demonstrated how
concurrency helps hide up to 60% of the network latency when
loading web pages. We also demonstrated that scalable concur-
rency exists and can be efficiently exploited for a number of
browser algorithms — CSS styling and image decoding are only
two such examples. When loading pages, we demonstrate that
ZOOMM is twice as fast as a native WebKit browser on a dual-
core Android platform. The technologies demonstrated in ZOOMM
are being adapted for production browsers.



Correct Prefetch Missed Prefetch Mistaken Prefetch Total Resources

Web site HTML CSS HTML CSS

Files Bytes  Files Bytes  Files Bytes  Files Bytes  Files Bytes  Files Bytes
cnn.com 34 979,695 52 409,377 2 372 0 0 5 3,371 93 1,392,815
bbc.co.uk/news 54 610,479 24 407,819 16 468,371 0 0 1 1,277 95 1,487,946
yahoo.com 44 672,595 13 264,603 2 2,016 1 0 0 0 60 939,214
guardian.co.uk 49 1,018,738 14 92,997 7 102,087 1 0 3 11,305 74 1,225,127
nytimes.com 73 1,046,636 9 73,487 13 228,162 1 10,837 1 89 97 1,359,211
engadget.com 128 2,023,135 84 651,030 5 104,320 0 0 9 34,824 226 2,813,309
qq.com 45 485,264 22 167,078 7 39,361 0 0 0 0 74 691,703

Table 1. Combined HTML & CSS Prefetching initiates download of most external resources ahead of their discovery by the HTML and CSS
parsers with high accuracy (“Correct Prefetch”) and small error (“Missed/Mistaken Prefetch”); web sites from Vellamo benchmark. “Total
Resources” denotes the number of referenced resources in a web page.
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Figure 9. Image-heavy web site benefit from the scalability of the
parallel image decoding algorithm, running on an Intel Xeon with
6 hyper-threaded cores.
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