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Abstract 
This paper presents design of a custom architecture for Discrete 
Cosine Transform (DCT) using No-Instruction-Set Computer (NISC) 
design flow that is developed for fast processor customization. Using 
several software transformations and hardware customization, we 
achieved up to 10 times performance improvement, 2 times power 
reduction, 12.8 times energy reduction, and 3 times area reduction 
compared to an already-optimized soft-core MIPS implementation. 
1. Introduction 
This paper presents design of a custom architecture for Discrete 
Cosine Transform (DCT) using No-Instruction-Set Computer (NISC) 
design flow that is developed for fast processor customization. 
Processor customization techniques such as designing Application-
Specific Instruction-Set Processors (ASIPs) [2] have recently emerged 
to meet the performance and power constraints of designs starting 
from high-level languages such as C. A new alternative to ASIP is 
No-Instruction-Set-Computer (NISC) [3] in which a cycle-accurate 
compiler generates code to control a given custom datapath at every 
clock cycle. However, instead of using any abstraction such as 
instruction-set or microcode, the NISC compiler directly generates the 
control signal values of every component in the datapath for every 
clock cycle. A NISC designer needs to only focus on designing the 
datapath, i.e. selecting the components and connecting them together. 
Unlike ASIPS, in NISC, there is no need for designing instruction-set 
and instruction decoder, or updating the compiler. The NISC compiler 
inputs the datapath as a netlist of RTL components, and automatically 
analyzes and extracts branch delay and possible operations. The 
datapath netlist contains components such as bus, multiplexer, 
register, register-file, memory, and functional unit. After compiling 
the program onto the given datapath, the compiler generates a string of 
control values, called Control Word (CW), for each cycle. These 
control words are stored in a control memory and are applied to the 
datapath by the controller at every cycle. 
In this case-study, first we compile the C code of DCT algorithm on a 
general-purpose datapath similar to a MIPS processor. Next, we apply 
several software transformations and hardware customization to 
improve the performance, power, energy and area.  

2. DCT algorithm 
The Discrete Cosine Transform (DCT) [1] and Inverse Discrete 
Cosine Transform (IDCT) are important parts of JPEG and MPEG 
standards. MPEG encoders use both DCT and IDCT, whereas MPEG 
decoders only use IDCT. The definition of DCT for a 2-D N×N matrix 
of pixels is as follows: 
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Where u, v are discrete frequency variables (0≤u, v≤N-1), f[i, j] gray 
level of pixel at position (i, j), and F[u,v] coefficients of point (u, v) in 
spatial frequency. Assuming N=8, matrix C is defined as follows: 
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Based on matrix C, an integer matrix C1 is defined as follows: C1 = 
round( factor × C). The C1 matrix is used in calculation of DCT and 
IDCT: F = C1 × f  × C2, where, C2= C1T. As a result, DCT can be 
calculated using two consecutive matrix multiplications. Figure 1(a) 
shows the C code of multiplying two given matrix A and B using 

three nested loops. Using a MIPS M4K  Core processor [4], the 
matrix-multiplication-based DCT takes 13058 cycles to compute [3]. 
However, given the MIPS datapath, the NISC-style processor takes 
10772 cycles to compute DCT. The 20% reduction in number of 
cycles is because of the finer-grained control that NISC compiler has 
over the datapath compared to traditional compilers that use 
instruction-set abstraction. We developed the synthesizable hardware 
description for our NISC-style MIPS (called NMIPS), and synthesized 
it using Xilinx ISE 6.3. In our implementation, the bus-width of the 
datapath is 16-bit for a 16-bit DCT precision, and the datapath does 
not have any integer divider or floating point unit. The clock 
frequency of 78.3MHz was achieved after synthesis and Placement-
and-Routing (PAR). All of the experiments in this paper are 
synthesized and mapped on Xilinx FPGA package Virtex2V250-6 
using Xilinx ISE 6.3 tool. Two synthesis optimizations of retiming 
and buffer-to-multiplexer conversions are applied to improve the 
performance. In these experiments, we set the PAR effort to the 
highest level possible for maximum clock speed. 

for(int i=0; i<8; i++) 
    for(int j=0; j<8; j++){ 
        sum=0; 
        for(int k=0; k<8; k++) 
            sum= sum+A[i][k]×B[k][j]; 
        C[i][j]= sum;     
    } 

 

ij=0; 
do { 
 i8 = ij & 0xF8; 
 j = ij & 0x7; 
 aL= *(A+(i8|0) ); bL= *(B + (0|j) );  sum =  aL × bL;  
 aL= *(A+(i8|1) ); bL= *(B + (8|j) );  sum+= aL × bL;  
 aL= *(A+(i8|2) ); bL= *(B + (16|j) ); sum+= aL × bL;  
 aL= *(A+(i8|3) ); bL= *(B + (24|j) ); sum+= aL × bL;  
 aL= *(A+(i8|4) ); bL= *(B + (32|j) ); sum+= aL × bL;  
 aL= *(A+(i8|5) ); bL= *(B + (40|j) ); sum+= aL × bL;  
 aL= *(A+(i8|6) ); bL= *(B + (48|j) ); sum+= aL × bL;  
 aL= *(A+(i8|7) ); bL= *(B + (56|j) );  
 *(C + ij) = sum + (aL × bL);  
} while(++ij!=64); 

(a) (b) 
Figure 1. (a) Original and (b) Transformed matrix multiplication 

3. Custom DCT implementations 
In general, customization of a design involves both software and 
hardware transformations. To increase the parallelism in code, we 
unroll the inner-most loop of the matrix multiplication code, merge 
the two outer loops, and convert some of the costly operations such as 
addition and multiplication to OR and AND. In DCT, the operation 
conversions are possible because of the special values of the constants 
and variables. The transformed code is shown in Figure 1(b). By 
looking at the body of loop, four steps of computation can be 
identified: (1) calculation of the memory addresses of the matrix 
elements; (2) loading the values from data memory; (3) multiplying 
the two values; (4) accumulating the multiplication results. We design 
our custom datapath in a way that each of these steps is a pipeline 
stage. Figure 2(a) shows the proposed custom pipelined datapath 
called CDCT1. The datapath includes four major pipeline stages that 
are marked in the figure. In NISC, Comparator (Comp) and Address 
Generator (AG) are used for handling jumps, while Link Register 
(LR) and direct address are used for supporting function calls. We 
have used operation chaining to reduce RF file accesses and decrease 
register pressure. The OR and ALU, as well as the Mul and Adder are 
chained. Note that the chaining of multiply and add forms a MAC unit 
in the datapath. After compilation, synthesis and PAR, the total 
number of cycles of the DCT is reduced to 3080, and the maximum 
clock frequency is 85.7MHz. Next, we iteratively apply the following 
datapath refinements to improve the performance, power, and area of 
DCT implementation:  
1) To reduce critical path delay that includes ALU delay and RF setup 
time, we add an extra register between the output of ALU and the 



input of RF. Also, LR and direct address are removed because, there 
is no need for a function call (the matrix multiplication code is 
inlined). Additionally, buses are simplified to point-to-point 
connections that are actually used by DCT. The result architecture is 
called CDCT2; 
2) The unused parts of ALU, Comp and RF are removed. A general-
purpose ALU and Comp supports many operations. However, as 
shown in Figure 1, only Add, Or, And, Multiply, and Not-equal (!=) 
operations are used in DCT. Therefore, the ALU and Comp can be 
simplified. Additionally, instead of 32-register RF, we can use a 16-
register RF because the rest is not used by the application. We call this 
new architecture CDCT3. 
3) After synthesizing CDCT3, we observe that the critical path 
includes the Control Memory (CMem) read delay, CW wire delay, 
and AG’s delay. Therefore, to reduce critical path delay, we apply 
controller pipelining by adding CW register and status register, and 
call the new architectures CDCT4 and CDCT5, respectively.  
4) To decrease the area, we reduce the bit-width of the components in 
address calculation pipeline stage without affecting the precision of 
DCT calculations. The result architecture is called CDCT6. 
5) After synthesizing CDCT6, we observe that the critical path goes 
through the Mul. Since Mul is a ASIC multiplier, we cannot reduce 
the critical path any further. However, if we consider Mul as a two-
cycle unit, we can further improve the clock frequency by adding 
pipeline registers at the outputs of the RF. The final architecture 
(CDCT7) is shown in Figure 2(b). 

  
(a) (b) 

Figure 2. Block diagram of (a) CDCT1, (b) CDCT7 

4. Comparing the DCT implementations 
Table 1 compares the performance, power, energy, and area of the all 
NISC implementations after synthesizing them on FPGA. The fourth 
column of Table 1 shows the total execution time of the DCT 
algorithm. Note that although in some cases (CDCT4, CDCT5, and 
CDCT7) the number of cycles increases, the clock frequency 
improvement compensates for that. Therefore, the total execution 
delay maintains a decreasing trend. 

Table 1. Performance, power, energy, and area of the NISCs  
 No. of 

cycles 
Clock 
Freq 

DCT exec. 
time(us) 

Power 
(mW) Enegy (uJ) Normalized 

area 
NMIPS 10772 78.3 137.57 177.33 24.40 1.00 
CDCT1 3080 85.7 35.94 120.52 4.33 0.81 
CDCT2 2952 90.0 32.80 111.27 3.65 0.71 
CDCT3 2952 114.4 25.80 82.82 2.14 0.40 
CDCT4 3080 147.0 20.95 125.00 2.62 0.46 
CDCT5 3208 169.5 18.93 106.00 2.01 0.43 
CDCT6 3208 171.5 18.71 104.00 1.95 0.34 
CDCT7 3460 250.0 13.84 137.00 1.90 0.35 

Power consumption (column fifth), also decreases as we introduce 
customization and datapath pipelining. However, in CDCT4, power 
consumption increases because of extra logic added by retiming 
algorithm. In general, as frequency increases the clock power of the 

datapaths increases. The power-breakdown of the designs (Figure 3) 
confirms this fact. 
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Figure 3. Power breakdown of the DCT implementations 

Figure 4 shows the performance, power, energy and area of the 
designs normalized against NMIPS. As shown in Figure 4, CDCT7 is 
the best design in terms of delay and energy consumption, while 
CDCT3 is the best in terms of power, and CDCT6 is the best in terms 
of area. As a result, CDCT3, CDCT6, and CDCT7 are considered the 
pareto-optimial solutions. Note that minimum energy and minimum 
power are achieved by two different designs: CDCT7 and CDCT3, 
respectively. Compared to NMIPS, CDCT7 runs 10 times faster, 
consumes 1.3 times less power and 12.8 times less energy. Also, it 
occupies 2.9 times less area than NMIPS. The minimum power 
consumption is achieved by the CDCT3, which consumes 2 times less 
power compared to NMIPS. Note that performance of NMIPS is 20% 
better than performance of a MIPS core. Also, since NMIPS does not 
have instruction decoder, its area and power are less than MIPS. In our 
experiments, we compared the results to NMIPS which is 
conservative relative to the MIPS core.   
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Figure 4. Comparing different DCT implementations

We configured the Xilinx Virtex-II Multimedia development board to 
run CDCT7. The board has a Virtex-II XC2V2000-FF896 FPGA 
package and only supports 27MHz, 53MHz, and 108MHz clock 
frequencies. Although CDCT7 could achieve the maximum clock 
frequency of 250MHz, we ran it with clock frequency of 108MHz on 
the board due to unavailability of higher clock frequencies. 

  
Figure 5. Xilinx Virtex-II 

multimedia board 
Figure 6. CDCT7 after 
placement and routing 

For all the DCT implementations, the synthesizable Verilog files, 
timing constraints, the synthesis scripts, and the Placement-and-
Routing results are available for download at [5].   
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