
Designing a Custom Architecture for DCT Using NISC Design Flow
Bita Gorjiara, Mehrdad Reshadi, Daniel Gajski

Center for Embedded System Computers, University of California Irvine
{bgorjiar, reshadi, gajski}@cecs.uci.edu

Abstract
This paper presents design of a custom architecture for Discrete
Cosine Transform (DCT) using No-Instruction-Set Computer (NISC)
design flow that is developed for fast processor customization. Using
several software transformations and hardware customization, we
achieved up to 10 times performance improvement, 2 times power
reduction, 12.8 times energy reduction, and 3 times area reduction
compared to an already-optimized soft-core MIPS implementation.
1. Introduction
This paper presents design of a custom architecture for Discrete
Cosine Transform (DCT) using No-Instruction-Set Computer (NISC)
design flow that is developed for fast processor customization.
Processor customization techniques such as designing Application-
Specific Instruction-Set Processors (ASIPs) [2] have recently emerged
to meet the performance and power constraints of designs starting
from high-level languages such as C. A new alternative to ASIP is
No-Instruction-Set-Computer (NISC) [3] in which a cycle-accurate
compiler generates code to control a given custom datapath at every
clock cycle. However, instead of using any abstraction such as
instruction-set or microcode, the NISC compiler directly generates the
control signal values of every component in the datapath for every
clock cycle. A NISC designer needs to only focus on designing the
datapath, i.e. selecting the components and connecting them together.
Unlike ASIPS, in NISC, there is no need for designing instruction-set
and instruction decoder, or updating the compiler. The NISC compiler
inputs the datapath as a netlist of RTL components, and automatically
analyzes and extracts branch delay and possible operations. The
datapath netlist contains components such as bus, multiplexer,
register, register-file, memory, and functional unit. After compiling
the program onto the given datapath, the compiler generates a string of
control values, called Control Word (CW), for each cycle. These
control words are stored in a control memory and are applied to the
datapath by the controller at every cycle.
In this case-study, first we compile the C code of DCT algorithm on a
general-purpose datapath similar to a MIPS processor. Next, we apply
several software transformations and hardware customization to
improve the performance, power, energy and area.

2. DCT algorithm
The Discrete Cosine Transform (DCT) [1] and Inverse Discrete
Cosine Transform (IDCT) are important parts of JPEG and MPEG
standards. MPEG encoders use both DCT and IDCT, whereas MPEG
decoders only use IDCT. The definition of DCT for a 2-D N×N matrix
of pixels is as follows:

 ∑∑
−

=

−

=

++
=

1

0

1

0
2 2

)12(cos
2

)12(cos],[1],[
N

m

N

n N
vn

N
umnmf

N
vuF ππ

Where u, v are discrete frequency variables (0≤u, v≤N-1), f[i, j] gray
level of pixel at position (i, j), and F[u,v] coefficients of point (u, v) in
spatial frequency. Assuming N=8, matrix C is defined as follows:

16
)12(cos

8
1]][[πunnuC +

=

Based on matrix C, an integer matrix C1 is defined as follows: C1 =
round(factor × C). The C1 matrix is used in calculation of DCT and
IDCT: F = C1 × f × C2, where, C2= C1T. As a result, DCT can be
calculated using two consecutive matrix multiplications. Figure 1(a)
shows the C code of multiplying two given matrix A and B using

three nested loops. Using a MIPS M4K  Core processor [4], the
matrix-multiplication-based DCT takes 13058 cycles to compute [3].
However, given the MIPS datapath, the NISC-style processor takes
10772 cycles to compute DCT. The 20% reduction in number of
cycles is because of the finer-grained control that NISC compiler has
over the datapath compared to traditional compilers that use
instruction-set abstraction. We developed the synthesizable hardware
description for our NISC-style MIPS (called NMIPS), and synthesized
it using Xilinx ISE 6.3. In our implementation, the bus-width of the
datapath is 16-bit for a 16-bit DCT precision, and the datapath does
not have any integer divider or floating point unit. The clock
frequency of 78.3MHz was achieved after synthesis and Placement-
and-Routing (PAR). All of the experiments in this paper are
synthesized and mapped on Xilinx FPGA package Virtex2V250-6
using Xilinx ISE 6.3 tool. Two synthesis optimizations of retiming
and buffer-to-multiplexer conversions are applied to improve the
performance. In these experiments, we set the PAR effort to the
highest level possible for maximum clock speed.

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 sum=0;
 for(int k=0; k<8; k++)
 sum= sum+A[i][k]×B[k][j];
 C[i][j]= sum;
 }

ij=0;
do {
 i8 = ij & 0xF8;
 j = ij & 0x7;
 aL= *(A+(i8|0)); bL= *(B + (0|j)); sum = aL × bL;
 aL= *(A+(i8|1)); bL= *(B + (8|j)); sum+= aL × bL;
 aL= *(A+(i8|2)); bL= *(B + (16|j)); sum+= aL × bL;
 aL= *(A+(i8|3)); bL= *(B + (24|j)); sum+= aL × bL;
 aL= *(A+(i8|4)); bL= *(B + (32|j)); sum+= aL × bL;
 aL= *(A+(i8|5)); bL= *(B + (40|j)); sum+= aL × bL;
 aL= *(A+(i8|6)); bL= *(B + (48|j)); sum+= aL × bL;
 aL= *(A+(i8|7)); bL= *(B + (56|j));
 *(C + ij) = sum + (aL × bL);
} while(++ij!=64);

(a) (b)
Figure 1. (a) Original and (b) Transformed matrix multiplication

3. Custom DCT implementations
In general, customization of a design involves both software and
hardware transformations. To increase the parallelism in code, we
unroll the inner-most loop of the matrix multiplication code, merge
the two outer loops, and convert some of the costly operations such as
addition and multiplication to OR and AND. In DCT, the operation
conversions are possible because of the special values of the constants
and variables. The transformed code is shown in Figure 1(b). By
looking at the body of loop, four steps of computation can be
identified: (1) calculation of the memory addresses of the matrix
elements; (2) loading the values from data memory; (3) multiplying
the two values; (4) accumulating the multiplication results. We design
our custom datapath in a way that each of these steps is a pipeline
stage. Figure 2(a) shows the proposed custom pipelined datapath
called CDCT1. The datapath includes four major pipeline stages that
are marked in the figure. In NISC, Comparator (Comp) and Address
Generator (AG) are used for handling jumps, while Link Register
(LR) and direct address are used for supporting function calls. We
have used operation chaining to reduce RF file accesses and decrease
register pressure. The OR and ALU, as well as the Mul and Adder are
chained. Note that the chaining of multiply and add forms a MAC unit
in the datapath. After compilation, synthesis and PAR, the total
number of cycles of the DCT is reduced to 3080, and the maximum
clock frequency is 85.7MHz. Next, we iteratively apply the following
datapath refinements to improve the performance, power, and area of
DCT implementation:
1) To reduce critical path delay that includes ALU delay and RF setup
time, we add an extra register between the output of ALU and the

input of RF. Also, LR and direct address are removed because, there
is no need for a function call (the matrix multiplication code is
inlined). Additionally, buses are simplified to point-to-point
connections that are actually used by DCT. The result architecture is
called CDCT2;
2) The unused parts of ALU, Comp and RF are removed. A general-
purpose ALU and Comp supports many operations. However, as
shown in Figure 1, only Add, Or, And, Multiply, and Not-equal (!=)
operations are used in DCT. Therefore, the ALU and Comp can be
simplified. Additionally, instead of 32-register RF, we can use a 16-
register RF because the rest is not used by the application. We call this
new architecture CDCT3.
3) After synthesizing CDCT3, we observe that the critical path
includes the Control Memory (CMem) read delay, CW wire delay,
and AG’s delay. Therefore, to reduce critical path delay, we apply
controller pipelining by adding CW register and status register, and
call the new architectures CDCT4 and CDCT5, respectively.
4) To decrease the area, we reduce the bit-width of the components in
address calculation pipeline stage without affecting the precision of
DCT calculations. The result architecture is called CDCT6.
5) After synthesizing CDCT6, we observe that the critical path goes
through the Mul. Since Mul is a ASIC multiplier, we cannot reduce
the critical path any further. However, if we consider Mul as a two-
cycle unit, we can further improve the clock frequency by adding
pipeline registers at the outputs of the RF. The final architecture
(CDCT7) is shown in Figure 2(b).

(a) (b)

Figure 2. Block diagram of (a) CDCT1, (b) CDCT7

4. Comparing the DCT implementations
Table 1 compares the performance, power, energy, and area of the all
NISC implementations after synthesizing them on FPGA. The fourth
column of Table 1 shows the total execution time of the DCT
algorithm. Note that although in some cases (CDCT4, CDCT5, and
CDCT7) the number of cycles increases, the clock frequency
improvement compensates for that. Therefore, the total execution
delay maintains a decreasing trend.

Table 1. Performance, power, energy, and area of the NISCs
 No. of

cycles
Clock
Freq

DCT exec.
time(us)

Power
(mW) Enegy (uJ) Normalized

area
NMIPS 10772 78.3 137.57 177.33 24.40 1.00
CDCT1 3080 85.7 35.94 120.52 4.33 0.81
CDCT2 2952 90.0 32.80 111.27 3.65 0.71
CDCT3 2952 114.4 25.80 82.82 2.14 0.40
CDCT4 3080 147.0 20.95 125.00 2.62 0.46
CDCT5 3208 169.5 18.93 106.00 2.01 0.43
CDCT6 3208 171.5 18.71 104.00 1.95 0.34
CDCT7 3460 250.0 13.84 137.00 1.90 0.35

Power consumption (column fifth), also decreases as we introduce
customization and datapath pipelining. However, in CDCT4, power
consumption increases because of extra logic added by retiming
algorithm. In general, as frequency increases the clock power of the

datapaths increases. The power-breakdown of the designs (Figure 3)
confirms this fact.

0

20

40

60

80

100

120

140

160

180

NMIPS CDCT1 CDCT2 CDCT3 CDCT4 CDCT5 CDCT6 CDCT7

P
ow

er
 (m

W
)

clock logic interconnect

Figure 3. Power breakdown of the DCT implementations

Figure 4 shows the performance, power, energy and area of the
designs normalized against NMIPS. As shown in Figure 4, CDCT7 is
the best design in terms of delay and energy consumption, while
CDCT3 is the best in terms of power, and CDCT6 is the best in terms
of area. As a result, CDCT3, CDCT6, and CDCT7 are considered the
pareto-optimial solutions. Note that minimum energy and minimum
power are achieved by two different designs: CDCT7 and CDCT3,
respectively. Compared to NMIPS, CDCT7 runs 10 times faster,
consumes 1.3 times less power and 12.8 times less energy. Also, it
occupies 2.9 times less area than NMIPS. The minimum power
consumption is achieved by the CDCT3, which consumes 2 times less
power compared to NMIPS. Note that performance of NMIPS is 20%
better than performance of a MIPS core. Also, since NMIPS does not
have instruction decoder, its area and power are less than MIPS. In our
experiments, we compared the results to NMIPS which is
conservative relative to the MIPS core.

0
0.1

0.2
0.3
0.4

0.5
0.6

0.7
0.8
0.9

1
1.1

NMIPS CDCT1 CDCT2 CDCT3 CDCT4 CDCT5 CDCT6 CDCT7

N
or

m
al

iz
ed

 V
al

ue
s

Normalized exec. Time Normalized power
Normalized area Normalized energy

Figure 4. Comparing different DCT implementations

We configured the Xilinx Virtex-II Multimedia development board to
run CDCT7. The board has a Virtex-II XC2V2000-FF896 FPGA
package and only supports 27MHz, 53MHz, and 108MHz clock
frequencies. Although CDCT7 could achieve the maximum clock
frequency of 250MHz, we ran it with clock frequency of 108MHz on
the board due to unavailability of higher clock frequencies.

Figure 5. Xilinx Virtex-II

multimedia board
Figure 6. CDCT7 after
placement and routing

For all the DCT implementations, the synthesizable Verilog files,
timing constraints, the synthesis scripts, and the Placement-and-
Routing results are available for download at [5].

References
[1] N. Ahmed, T. Natarajan, and K.R. Rao, Discrete Cosine Transform, IEEE Trans. On

Computers, vol. C- 23, pp. 90-93, Jan 1974
[2] M.K. Jain, M. Balakrishnan, and A. Kumar, ASIP Design Methodologies: Survey

and Issues, In Proc. of International Conference on VLSI Design, 2001.
[3] M. Reshadi, D. Gajski, A Cycle-Accurate Compilation Algorithm for Custom

Pipelined Datapaths, In Proc. ISSS05, 2005.
[4] MIPS32® M4K™ Core, http://www.mips.com
[5] http://newport.eecs.uci.edu/~bgorjiar/projects/NISC/customDCT/

