

UNIVERSITY OF CALIFORNIA,
IRVINE

No-Instruction-Set-Computer
(NISC) Technology

 Modeling and Compilation

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Mohammad Reshadi

Dissertation Committee:
Professor Daniel Gajski, Chair

Professor Rainer Doemer
Professor Fadi Kurdahi
Professor Alex Nicolau

2007

 2007 Mohammad Reshadi

 ii

The dissertation of Mohammad Reshadi
is approved and is acceptable in quality
and form for publication on microfilm:

 Committee Chair

University of California, Irvine
2007

 iii

To my wife, Bita, and my parents.

 iv

Contents
 Page
List of Figures.. vi
List of Tables ... ix
Acknowledgements... x
Curriculum Vitae ..xii
Abstract of the Dissertation .. xiv
Chapter 1. Introduction ... 1

1.1 From High Level Synthesis (HLS) to NISC ... 4
1.2 From ASIP to NISC... 8
1.3 NISC Technology.. 13
1.4 Contributions of this thesis... 16

Chapter 2. NISC Architecture.. 19
Chapter 3. Modeling NISC architecture for compilation.. 25

3.1 NiscArchitecture: the top module of design.. 27
3.1.1 Compiler aspect of NiscArchitecture .. 29

3.2 Basic components .. 32
3.3 Hierarchical components.. 34
3.4 Comparison with other approaches .. 37

Chapter 4. Compilation ... 41
4.1 Overview of compilation algorithm.. 41

4.1.1 Example: Simple datapath.. 44
4.1.2 Example: multi-cycle operation.. 47
4.1.3 Example: pipelined operation... 47
4.1.4 Example: heterogeneous pipelining and data forwarding 50
4.1.5 Example: pipelining, forwarding, and operation chaining 53
4.1.6 Example: Controller pipelining .. 56

4.2 Cycle-accurate compilation algorithm.. 58
4.2.1 Mapping the CFG of the program... 59
4.2.2 Mapping the DFG of the program .. 60

4.3 Other scheduling algorithms .. 64
Chapter 5. Low-level programming in NISC using C .. 67

5.1 Motivating example ... 68
5.2 Providing low-level programming in NISC.. 69
5.3 Pre-bound functions in GNR and C.. 72
5.4 Benefits of pre-bound functions and variable ... 75

Chapter 6. Interrupt handing.. 77
6.1 Challenge of interrupt support in NISC.. 78
6.2 Adding interrupt handling to NISC .. 79
6.3 The interrupt unit (IU) ... 84
6.4 Analysis of NISC interrupt handling approach ... 88

Chapter 7. Communication case studies .. 92

 v

7.1 Adding a communication protocol to NISC..94
7.2 Case studies: communication interfaces for NISC ..96

7.2.1 Point-to-point single-word interface..96
7.2.2 Shared queue interface..100
7.2.3 Double-Handshake bus interface ..103

Chapter 8. Experiments..108
8.1 Compiling on different architectures ..109
8.2 Compilation on a general-purpose NISC ..111
8.3 Custom datapath design for DCT ...114
8.4 Communicating NISC components ..119

Chapter 9. Conclusion and future work..122
9.1 Future work..127

Bibliography..129

 vi

List of Figures

 Page
Figure 1.1. Designer Productivity vs. Design Quality .. 2
Figure 1.2. Desired proportion between optimization effort and criticality....................... 3
Figure 1.3. Complete separation of datapath and controller in the design flow................. 7
Figure 1.4. NISC: filling the gap between designer productivity vs. design quality........ 14
Figure 2.1. A sample NISC architecture .. 19
Figure 2.2. A typical NISC controller .. 20
Figure 2.3. Statically scheduled control words... 21
Figure 2.4. NISC design flow.. 22
Figure 2.5. Iterative design using NISC Technology.. 24
Figure 3.1. Block diagram of a simple NISC architecture .. 27
Figure 3.2. GNR description of the NISC in Figure 3.1 ... 28
Figure 3.3. Compiling pointer calculations to 3-address code with 4 byte pointers......... 30
Figure 3.4. Using SP/FP registers in the 3-address code of function call 30
Figure 3.5. Control word structure according to GNR of Figure 3.2............................... 31
Figure 3.6. NISC model of Figure 3.1 after loading and adding control connections...... 31
Figure 3.7. GNR description of an example ALU.. 33
Figure 3.8. GNR description of a Mux2 multiplexer.. 35
Figure 3.9. Construction of Mux4 from several Mux2 components................................ 36
Figure 3.10. GNR of Mux4 built from several Mux2 components 36
Figure 3.11. Mux4 module with compiler aspect to speed up compilation 37
Figure 4.1. Different possible schedules for the DFG depending on binding.................. 42
Figure 4.2. Partitioning a DFG into output sub-trees.. 43
Figure 4.3. Compiling on a datapath without pipelining... 44
Figure 4.4. Schedule of MAs after scheduling + operation... 45
Figure 4.5. Schedule of MAs after scheduling h sub-tree... 46
Figure 4.6. Schedule of MAs after scheduling a sub-tree... 46
Figure 4.7. Schedule of MAs after scheduling DFG of Figure 4.3.................................. 46
Figure 4.8. Schedule of Figure 4.3(a) DFG with a multi-cycle multiplier....................... 47
Figure 4.9. Compiling on a datapath without pipelining... 48
Figure 4.10. Schedule of MAs after scheduling + operation... 48
Figure 4.11. Schedule of MAs after scheduling h sub-tree ... 49
Figure 4.12. Schedule of MAs after scheduling a sub-tree on pipelined multiplier 49
Figure 4.13. Schedule of MAs after scheduling DFG of Figure 4.9................................ 50

 vii

Figure 4.14. Compiling in presence of heterogeneous pipelining and data forwarding....50
Figure 4.15. Schedule of MAs after scheduling + operation ...51
Figure 4.16. Schedule of MAs after scheduling h sub-tree ...52
Figure 4.17. Schedule of MAs after scheduling a sub-tree ...52
Figure 4.18. Compiling in presence of forwarding and operation chaining53
Figure 4.19. Schedule of MAs after scheduling >> operation...54
Figure 4.20. Schedule of MAs after scheduling + operation ...54
Figure 4.21. Schedule of MAs after scheduling c sub-tree..55
Figure 4.22. Schedule of MAs after scheduling all sub-trees ..55
Figure 4.23. Compiling CFG in presence of controller pipelining56
Figure 4.24. Schedule of MAs after scheduling jump operation......................................57
Figure 4.25. Schedule of MAs after scheduling == operation...57
Figure 4.26. Full schedule of jump in presence of controller pipelining..........................58
Figure 4.27. Pseudo code of ScheduleFunction ..60
Figure 4.28. The ScheduleBasicBlock procedure ...61
Figure 4.29. The ScheduleOperation function ..63
Figure 4.30. The ScheduleOperands function...63
Figure 4.31. The ScheduleRead function..63
Figure 5.1. Normal code for finding maximum of four numbers68
Figure 5.2. Datapath with custom function unit for finding maximum of two numbers...69
Figure 5.3. Finding maximum of four numbers using a custom FU in Figure 5.269
Figure 5.4. Execution of normal function calls ...71
Figure 5.5. Executing a pre-bound function ...71
Figure 5.6. Finding maximum of four numbers using Max pre-bound function71
Figure 5.7. NISC tool flow with pre-binding..73
Figure 5.8. GNR of description of Max unit shown in Figure 5.275
Figure 5.9. Generated pre-bound C codes ..75
Figure 6.1. (a) Sample datapath, (b) sample code...78
Figure 6.2. (a) single-cycle, (b) chained, (c) multi-cycle operations79
Figure 6.3. Updated controller for supporting interrupt ..81
Figure 6.4. CDFG of a typical function call ...82
Figure 6.5. Interrupt exaction after a jump operation..83
Figure 6.6. Interrupt execution after a call operation..83
Figure 6.7. The structure of Interrupt Unit ...85
Figure 6.8. The GNR code for an Interrupt Unit (IU) ...86
Figure 6.9. Sample C code for using pre-bound functions of IU.....................................87
Figure 6.10. Sample datapath for pre-binding ..87
Figure 6.11. A generic NISC Architecture (GN) used for analyzing size of basic blocks 89
Figure 6.12. Distribution of basic blocks shorter than 100 cycles90
Figure 6.13. Distribution of basic blocks longer than 100 cycles90
Figure 7.1. dividing a protocol to un-timed and timed behaviors95
Figure 7.2. Software and hardware architecture of an IP ..95
Figure 7.3. Block diagram of point-to-point single-word CIs (send and receive)97
Figure 7.4. GNR of single word point-to-point CI for producer component....................98
Figure 7.5. GNR of single word point-to-point CI for consumer component99
Figure 7.6. (a) send, (b) receive driver code for point-to-point single-word CIs............100

 viii

Figure 7.7. Block diagram of point-to-point queue-based CIs (send and receive) 101
Figure 7.8. GNR of point-to-point queue-based CI for producer component 102
Figure 7.9. GNR of point-to-point queue-based CI for consumer component............... 102
Figure 7.10. (a) send, (b) receive driver code for point-to-point queue-based CIs 103
Figure 7.11. Block diagram of shared-bus CIs (send and receive) 104
Figure 7.12. Timing diagram of the example bus protocol ... 104
Figure 7.13. FSMs inside (a) send and (b) receive CIs... 106
Figure 7.14. (a) send, (b) receive driver code for shared-bus CIs 107
Figure 7.15. Pre-bound functions of (a) send, (b) receive CIs for shared bus................ 107
Figure 8.1. GN0 with no pipelining or data forwarding.. 109
Figure 8.2. GN1 with pipelining but no data forwarding.. 110
Figure 8.3. GN2 with pipelining and data forwarding .. 110
Figure 8.4. GN3 with non uniform structure.. 110
Figure 8.5. A generic NISC architecture (GN)... 112
Figure 8.6. (a) Original and (b) Transformed matrix multiplication 116
Figure 8.7. Block diagram of (a) CDCT1, (b) CDCT7... 116
Figure 8.8 Comparing different DCT implementations .. 118
Figure 8.9. Implementing Mp3 (a) single core, (b) with coprocessor, and (c) pipelined 121

 ix

List of Tables

 Page
Table 8.1. Execution and compilation time for various architectures............................111
Table 8.2. Area and clock frequency of MicroBlaze and GN..113
Table 8.3. Comparing MicroBlaze with GN...113
Table 8.4. Performance, power, energy, and area of the DCT implementations117
Table 8.5. Area and clock frequency of MicroBlaze and GN..120
Table 8.6. Throughput of three Mp3 implementations..120

 x

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Daniel Gajski for his

excellent guidance, support, and patience with me. He never hesitated to share his

knowledge and experience with me and always created an open environment for

discussion and brainstorming. He gave me freedom to explore on my own and test my

ideas and always put up with my mistakes. He has been more than an academic advisor to

me for which I am forever grateful.

I would also like to thank Prof. Rainer Doemer for his support and fruitful

discussions as well as serving on my committee. I also like to thank Prof. Fadi Kurdahi

and Alex Nicolau for serving on my committee and their insightful comments for

improving this work.

I am very grateful to other NISC team members especially Bita Gorjiara and Jelena

Trajkovic for their helps and contributions, for finding the bugs in the compiler, and for

patiently helping me to resolve any issues. I also very much appreciate all the effort and

help from Pramod Chandraiah, Dr. Samar Abdi, and Han-su Cho for developing many of

the design examples used in this thesis. I like to also thank Karthik Manivannan for his

helps with the GCC front end.

 xi

I like to thank Dr. Andreas Gerstlauer and Gunar Schirner for not giving up in our

long discussions that most often ended on a high point and new ideas to think about. I am

grateful to all my lab mates in the ESMG group for their friendship as well as their

encouraging and constructive critiques especially in seminars and presentation dry runs. I

also like to thank Prof. Nikil Dutt, Prof. Prabhat Mishra, and Dr. Sumit Gupta from

whom, in addition to technical matters, I learned a lot about effective presentation and

publication.

My pursuit of PhD has become more fun and effective thanks to the members of

Center for Embedded Computer Systems (CECS) who were always there to lend a hand

(or an ear!). I am also thankful to the CECS and ICS staff specially Grace Wu, Melanie

Kilian, Melanie Sanders, and Kris Bolcer for all their help and support.

Last but not least, I am deeply grateful to my parents and my wife, Bita. My parents

made many sacrifices to ensure I get the best possible education and lovingly guided me

every step of the way. My wife is the most important reason in the success of my PhD.

She has provided me with unconditional love, support, and understanding. I have been

very lucky, beyond anything I could have wished for, to have her by my side and also

work with her in the same team. It would be impossible for me to express my gratitude

towards her and my parents in mere words. I dedicate this thesis to them.

 xii

Curriculum Vitae

Mohammad1 Reshadi
Education
 2007 Ph.D. in Computer Science, University of California Irvine, USA
 2000 M.S. in Computer Science, University of Tehran, IRAN
 1997 B.S. in Computer Engineering, Sharif University of Technology, IRAN
Selected Publications
1. B. Gorjiara, M. Reshadi, D. Gajski, "Chapter 10: Low-Power Design with NISC

Technology", J. Henkel, S. Parameswaran, Designing Embedded Processors: A Low
Power Perspective, Springer, ISBN: 978-1-4020-5868-4, April 2007.

2. M. Reshadi, P. Mishra, N. Dutt, "Hybrid Compiled Simulation: An Efficient
Technique for Instruction-Set Architecture Simulation", ACM Transactions on
Embedded Computing Systems (TECS), 2007.

3. M. Reshadi, B. Gorjiara, N. Dutt, "Generic Processor Modeling for Automatically
Generating Very Fast Cycle-Accurate Simulators", IEEE Transactions on Computer
Aided Design (TCAD), Volume 25, Issue 12, pages 2904-2918, December 2006.

4. M. Reshadi, P. Mishra, N. Dutt, "A Retargetable Framework for Instruction-Set
Architecture Simulation", ACM Transactions on Embedded Computing Systems
(TECS), Volume 5, Issue 2, pages 431-452, May 2006.

1. M. Reshadi, D. Gajski, "Interrupt and Low-level Programming Support for
Expanding the Application Domain of Statically-scheduled Horizontally-microcoded
Architectures in Embedded Systems", Design Automation and Test in Europe
(DATE), April 2007.

2. B. Gorjiara, M. Reshadi, P. Chandraiah, D. Gajski, "Generic Netlist Representation
for System and PE Level Design Exploration", International Symposium on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), October 2006.

3. B. Gorjiara, M. Reshadi, D. Gajski, "Generic Architecture Description for
Retargetable Compilation and Synthesis of Application-Specific Pipelined
Datapaths", International Conference on Computer Design (ICCD), October 2006.

4. J. Trajkovic, M. Reshadi, B. Gorjiara, D. Gajski, "A Graph Based Algorithm for Data
Path Optimization in Custom Processors",9th Euromicro Conference on Digital
System Design, September 2006.

1 Most people know me with my nick name: Mehrdad Reshadi

 xiii

5. B. Gorjiara, M. Reshadi, D. Gajski, "Designing a Custom Architecture for DCT
Using NISC Design Flow", Asia and South Pacific Design Automation Conference
(ASP-DAC), Design Contest, 2006.

6. M. Reshadi, B. Gorjiara, D. Gajski, "Utilizing Horizontal and Vertical Parallelism
with No-Instruction-Set Compiler for Custom Datapaths ", International Conference
on Computer Design (ICCD), October 2005.

7. M. Reshadi, D. Gajski, "A Cycle-Accurate Compilation Algorithm for Custom
Pipelined Datapaths ", International Symposium on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), September 2005.

8. M. Reshadi, P. Mishra, "Memory Access Optimizations in Instruction-Set Simulators
", International Symposium on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), September 2005.

9. M. Reshadi, N. Dutt, "Generic Pipelined Processor Modeling and High Performance
Cycle-Accurate Simulator Generation", Design Automation and Test in Europe
(DATE), March 2005.

10. B. Gorji-Ara, P. Chou, N. Bagherzadeh, D. Jensen, M. Reshadi, "Fast and Efficient
Voltage Scheduling by Evolutionary Slack Distribution", Asia and South Pacific
Design Automation Conference (ASP-DAC), January 2004.

11. M. Reshadi, N. Dutt, "Reducing Compilation Time Overhead in Compiled
Simulators", International Conference on Computer Design (ICCD), October 2003.

12. M. Reshadi, N. Bansal, P. Mishra, N. Dutt, "An Efficient Retargetable Framework for
Instruction-Set Simulation", International Symposium on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), October 2003. Best Paper Award.

13. M. Reshadi, P. Mishra, N. Dutt, "Instruction Set Compiled Simulation: A Technique
for Fast and Flexible Instruction Set Simulation", Design Automation Conference
(DAC), June 2003.

14. S. Gupta, M. Reshadi, N. Savoiu, N. Dutt, R.K. Gupta, A. Nicolau, "Dynamic
Common Sub-Expression Elimination during Scheduling in High-Level Synthesis",
International Symposium on System Synthesis (ISSS), October 2002.

15. D. Rahmati, A. Salimi, M. Reshadi, Z. Navabi, "Handling Complex VHDL Semantics
with an OO Intermediate Format", IEEE Canadian Conference on Electrical &
Computer Engineering (CCECE), May 2001.

16. B. Gorjiara, M. Reshadi, M. Fakhraie, "GeReDiF: Using XML as a Structured Data
Format in Grid Applications", IEEE International Symposium on Cluster Computing
and the Grid (CCGrid), May 2001.

17. M. Reshadi, B. Gorji-Ara, Z. Navabi, "Portability and Security, All in CHIRE File
System", Hardware Description Language Conference (HDLCon), February 2001.

18. M. Reshadi, A. M. Gharehbaghi, Z. Navabi, "AIRE/CE: A Revision Towards CAD
Tool Integration", International Conference on Microelectronics (ICM), November
2000.

19. M. Reshadi, B. Gorji-Ara, Z.Navabi, "HDML: Compiled VHDL in XML", VHDL
International Users Forum (VIUF), October 2000.

20. M. Reshadi, A. M.Gharehbaghi, Z. Navabi, "Intermediate Format Standardization:
Ambiguities, Deficiencies, Portability issues, Documentation and Improvements",
Hardware Description Language Conference (HDLCon), March 2000.

 xiv

Abstract of the Dissertation

No-Instruction-Set-Computer
(NISC) Technology

Modeling and Compilation
by

Mohammad Reshadi
Doctor of Philosophy in Information and Computer Science

University of California Irvine, 2007
Professor Daniel Gajski, Chair

Due to the productivity gain of using software in the design of embedded systems,

processors are increasingly used in these systems. Embedded processors often run only

one or a few applications in the life-time of the system. Therefore, they can be

customized for the target applications and significantly improve the quality of the

embedded system in terms of cost or other constraints such as performance, and power

consumption. Instruction-based architectures limit the customizations because: (a)

hardware designer is limited by instruction coding, size and complexity of the decoder;

(b) compilers can support certain class of instructions and hence instructions cannot be

very complex; and (c) manually updating compilers to incorporate the custom

 xv

instructions is not practical and developing compilers that automatically utilize hardware

customizations through new custom instructions is very complex.

On the other hand using technologies such as High Level Synthesis (HLS) is not

always possible because the traditional HLS techniques can only support relatively small

applications. Also they do not give enough control to the designer over the quality of

results. Additionally, the main interdependent subtasks of HLS, i.e. resource allocation,

operation scheduling, and resource binding, are already too complex themselves and

hence adding new constrains such as design for manufacturability to them is not practical.

In this thesis we present a new design approach called NISC (No-Instruction-Set-

Computer) Technology. In NISC, the datapath and controller are generated in two

different phases. First the datapath is generated or selected from a database based on the

application behavior. At the core of NISC technology, there is a cycle-accurate compiler

that maps a given application directly on a given datapath and generates the control

words (CWs) that control the datapath resources in every clock cycle. The NISC

architecture style is similar to the old nanocode machines. However, instead of using

nanocodes inside the process for implementing the microcodes and in turn instructions, in

NISC the nanocode (CWs) are directly used to program the datapath.

NISC simplifies customization and allows designer to fully control design quality.

NISC simplifies ASIP (Application-Specific-Instruction-Processor) approach by

removing the complex task of finding and designing “most profitable” custom

instructions. In NISC only the datapath needs to be specified and NISC compiler

generates code as if each basic block of the program is executed with one custom

instruction. On the other hand, NISC improves resource constrained HLS techniques by

 xvi

adding the connectivity constraints, on top of the traditional resource constraints, into

synthesis process. This enables the designer to control every thing in datapath including

wires, which are becoming increasingly more critical in newer technologies.

To realize the NISC Technology design flow, several challenging categories of

problems must be solved. Mainly we need:

1. Techniques for efficiently designing and customizing a datapath for an application

2. Techniques for efficiently compiling any application on any given datapath

3. Techniques for efficiently synthesizing a controller from the output of compiler

and then generating synthesizable code for different target implementations.

In this thesis we focus on the compilation problems to enable practical use of NISC

IPs in a system. We mainly address: modeling of datapath for compilation, scheduling

algorithm for compilation, interrupt support in the statically-scheduled pipelined NISC

components, and low-level programming in C language in the absence of assembly.

Finally we show how different communication interfaces and protocols can be added and

used in a NISC component. At the end, we present results that show efficient and fast

compiler as well as significant quality improvements for presented experiments. A

working compiler incorporating all of the solutions in this thesis, along with the

experiments and other NISC toolsets is available for public use from NISC website

http://www.cecs.uci.edu/~nisc/. An online version of the tools can be also directly

accessed at this website.

http://www.cecs.uci.edu/~nisc/

1

Chapter 1. Introduction

Rising const and complexity of systems on one hand, and more constrained

requirements on the other hand, demand design approaches that not only increase the

productivity of designers but also provide better ways of controlling and improving the

quality of final results. An obvious way of increasing productivity is raising the

abstraction level. As a result, designers are increasingly looking into implementing their

algorithms from a high level description (such as C or other high level languages) rather

than describing them directly at RTL (Register Transfer Level). When using a high level

description of an algorithm, one of the obvious implementation choices is to use a

processor and compile the algorithm to the instruction-set of that processor. This provides

tremendous productivity but does not allow the designer to optimize quality metrics (such

as performance, area, power …) the way it is possible with a RTL design. On the other

hand, manual RTL implementation can improve quality but at the cost of increased

design time and hence reduced productivity.

Ideally, the designer must be able to describe all blocks of the design in C, for

example, and be able to achieve the desired quality and meet the required constraints.

Two different technologies, High Level Synthesis (HLS) and Application Specific

Instruction-set Processors (ASIP), have tried to achieve this goal (Figure 1.1). HLS tries

 2

to improve the productivity of RTL design by directly converting high level C description

in to an RTL Hardware Description Language (HDL). However, HLS techniques offer a

one-direction path from application (C code) to implementation (RTL). They also

typically can only support a sub-set of language features and can handle small application

sizes. Additionally, the designer cannot directly correlate the effect of application

modifications to final implementation quality metrics such as area, power, clock

frequency, routable layout …. Therefore, the designer can only rely on try and error and

guess work for improving the quality. Because of this major drawback, result quality of

HLS tools is significantly lower than manual RTL. On the other hand in ASIP, a base-

processor is “extended” to support application-specific custom instructions. Finding

proper custom instructions is a very challenging and time-consuming task. Additionally,

since the base-processor is always extended, the designer must always pay for all of the

resources of the base-processor even if the application does not use all of them. As a

result, today still designers have to choose between high productivity and high quality but

cannot achieve both simultaneously.

Pr
od

uc
tiv

ity

Design Quality

ASIP

RTL

Processor
(software)

HLS

Figure 1.1. Designer Productivity vs. Design Quality

 3

Another problem with ASIP and HLS is the discontinuity in the spectrum of design

complexities that the two technologies can be applied to. In other words, if the designer

has a mid-complexity design that can be implemented by both ASIP and HLS, then to try

both technologies, the designer must use two distinct set of tools, skills, and design flows.

This practical limitation prevents efficient design space exploration. Typically, the

building blocks of an application have different levels of criticality in the overall quality.

For example some blocks may consume more power or area than others; or the overall

performance of the design may depend on some blocks more than others. The designer

would want to spend more time on optimizing more critical blocks (depicted in Figure

 1.2). However, with the current technologies, the designer should first decide upfront

with blocks are implemented in software and which blocks are implemented in RTL.

Then proportionally, the same amount of time should be spent on all RTL blocks, and

similar degree of quality loss will appear in software blocks. If in later stages of design, a

block must be moved from one domain (e.g. software) to another (e.g. hardware), then all

developments efforts on that block will be inapplicable in the new domain.

Time spend on optimization

Quality

Block of application

More critical

Less critical

Figure 1.2. Desired proportion between optimization effort and criticality

 4

In this thesis, I present an alternative design approach called No-Instruction-Set-

Computer (NISC) Technology to address the above problems. In the rest of this chapter, I

first explain the limitations of ASIP and HLS in more details and then present an

overview of the NISC technology and the corresponding design approach. Chapter 2

describes the NISC architecture and design flow in more details. Chapter 3 shows how

we model NISC and Chapter 4 presents the compilation algorithm. Chapter 5 and Chapter

6 explain how low-level programming and interrupt are supported in NISC while Chapter

7 shows how to use these features handle timed behaviors and add different

communication interfaces to NISC. Several experimental results are presented in Chapter

8. Chapter 9 concludes the thesis and presents some future directions for extending the

work of this thesis.

1.1 From High Level Synthesis (HLS) to NISC

Traditional High Level Synthesis (HLS) techniques [19] [56] [26] [54] [14] [15] [46]

take an abstract behavioral description and generate a register-transfer-level (RTL)

datapath and controller. Traditional HLS includes three main tasks: resource allocation,

operation scheduling, and resource binding. These tasks are interdependent and different

researchers have suggested different heuristics that perform then in different orders.

Typically, first operations are scheduled based on some resource constraints, then proper

number of functional units and storages are allocated, and finally operations are bound to

functional units and variables are bound to storages. Afterwards, the datapath is generated

by connecting storages and functional units to ensure that in each cycle the scheduled

operation has access to corresponding storages for reading its input operands and writing

its result. While most HLS techniques use list-based scheduling [19] and perform

 5

allocation and binding separately, some approach, such as [13] and [44], try to perform

scheduling, allocation and binding simultaneously using integer linear programming or

branch-and-bound algorithms. Although they may achieve optimal results, complexity

restrains the practical applicability of such approaches.

The generated datapath is in form of a netlist and must be converted to layout for the

final physical implementation. Lack of access to layout information limits the accuracy

and efficacy of design decisions (or optimizations) during synthesis. For example,

applying interconnect pipelining technique is not easy during scheduling, because wire

information is not available yet. Many researchers ([37] [69] [20] [33] [72] [22]) have also

attempted to incorporate layout information in the synthesis process, especially in

scheduling. However, similar to traditional HLS, these approaches generate the datapath

after scheduling and therefore they can only predict or estimate layout information during

scheduling. However, usually these techniques are inaccurate and are at best only

applicable to a specific manufacturing technology. It is also possible to refine the design

after generating the layout. In this case, since the physical parameters can be calculated or

estimated from the generated layout, the results will be more accurate. However, possible

optimizations that use these physical properties have very limited applicability. This is

because they are applied to a generated design after scheduling and the optimizations

must always maintain the validity of the schedule. For example, applying interconnect

pipelining is only possible if the affected states have enough slack time so that schedule

can be modified locally while maintaining its validity [34] [64] [60] [17] [7] [16] [29] [28]. In

other words, aggressive and efficient optimizations are limited after generating the

datapath because they might invalidate the schedule.

 6

On the other hand, to give the designer more control over quality of generated

results, resource constrained approaches can incorporate limitations on the type and

number of resources that are allowed in the design and are given as input to the system.

In some cases [15] [27] number and type of multiplexers and buses can also be specified.

But the designer cannot control input how components are connected as a constraint to

these systems. No HLS technique considers interconnects as constrain.

In the newer technologies, wires contribute significantly more so the overall delay,

power consumption, area, and complexity of the design. The wire parameters directly

depend on the geometry of the layout. The layout information is also needed for Design-

For-Manufacturability (DFM). The growing complexity of new manufacturing

technologies demands synthesis techniques that support DFM. However, the

interdependent scheduling, allocation and binding tasks in HLS are too complex by

themselves and adding DFM and accurate layout estimations will add another degree of

complexity to the design process. This increasing complexity requires a design flow that

provides a practical separation of concerns and supports more aggressive optimizations

based on accurate information.

If we consider the progress of resource-constrained HLS, we can see that researchers

have always tried to improve the quality of results by increasing the designer’s control

over how the final datapath should look like. In the past the effect of wires on the quality

was negligible compared to that of logic resources (i.e. functional units, storages,

multiplexers, and some how busses). In the newer technologies, it is necessary to

consider both resource and connectivity constraints for efficient and high quality

synthesis. But what does connectivity-constrained means? It means in addition to the

 7

number and type of resources, the way these resources are connected to each other is also

inputted to the synthesis. In other words, the datapath is specified, and the synthesis tool

must map the application (C code) to the given datapath and generate the controller. This

brings us to the NISC Technology. Figure 1.3 shows a design flow in which generation of

datapath and controller are completely separated. This separation has several positive

effects including:

• It enables iterative design and quality improvements through refinement.

• DFM and other layout optimizations can be handled independently.

• Accurate layout information can be used by scheduler and other synthesis phases.

datapath
selection/
generation

application

custom
datapath

cycle-accurate
compilation

constraints

controller

Figure 1.3. Complete separation of datapath and controller in the design flow

In the design flow of Figure 1.3, first the datapath is designed and remains fixed

during compilation. Then the controller is generated by mapping (scheduling and

binding) the application on the given datapath using a new cycle-accurate compiler. This

compiler combines HLS, Application Specific Instruction set Processor (ASIP) design,

and retargetable compiler techniques.

In some aspects, the proposed design flow is similar to the compilation of

applications for processors because in both cases the datapath is fixed during the mapping

process. However, traditional compilers rely on instruction-set (or microcode) to abstract

out the functionality of processor’s datapath and assume that the processor translates such

 8

abstractions to proper control signals. In our approach, the cycle-accurate compiler

directly maps the application on the given datapath by (1) binding operations, storages,

and interconnects, and (2) scheduling the control signal values of datapath components in

proper clock cycles. Therefore, it has complete fine-grain control over datapath and can

achieve better parallelism and resource utilization. Since we do not use predefined

instruction semantics, we call the result architecture No-Instruction-Set-Computer

(NISC). In this thesis, I present the solutions to some of the challenging problems

involved in realization of such cycle-accurate compiler.

1.2 From ASIP to NISC

Performance of applications can be improved by exploiting their inherent horizontal

and vertical parallelism. Horizontal parallelism occurs when multiple independent

operations can be executed simultaneously. Vertical parallelism occurs when different

stages of a sequence of operations can be overlapped. In processors, horizontal

parallelism is utilized by having multiple functional units that run in parallel and vertical

parallelism is utilized through pipelining.

Currently, in VLIW processors, the compiler controls the schedule of parallel

independent operations (horizontal control). However, in all processors, the compiler has

no control over the flow of instructions in the pipeline (vertical control). Therefore, the

vertical parallelism of the program may not be efficiently utilized. In Application

Specific Instruction-set Processors (ASIPs) [38], structure of pipeline can be customized

for an application through custom instructions.

In ASIPs, functionality and structure of datapath can be customized for an

application through custom instructions. At run time, each custom instruction is decoded

 9

and executed by the corresponding custom hardware. Due to practical constrains on size

and complexity of instruction decoder and custom hardware, only few custom

instructions can be actually implemented in ASIPs. Therefore, only the most frequent or

beneficial custom instructions are selected and implemented. Implementing these custom

instructions requires: (a) designing custom hardware for each instruction, (b)

implementing an efficient instruction decoder, and (c) incorporating the new instructions

in the compiler. These steps are complex and usually time consuming tasks that require

special expertise. Furthermore, in all processors, no matter how many times an

instruction is executed, it always goes through an instruction decoder. The instruction

decoder consumes power, area, and complicates the controller as well.

 Typically, ASIPs rely on retargetable compilers that automatically incorporate the

custom instructions into the compiler by using a processor description captured in an

Architecture Description Language (ADL) [52] [71]. All retargetable compilers rely on

high level instruction abstractions to indirectly control the datapath of the processor.

They always assume that the processor already has a controller that translates the

instructions into proper control signals for the datapath components. In behavioral ADLs,

the processor is described in terms the behavior of its instructions. These ADLs are

usually very lengthy because they have to capture all possible configurations of

instructions. Furthermore, since no structural information is available in the ADL, the

quality of automatically generated RTL (if any) for the processor is very low. Structural

ADLs try to improve the quality of generated RTL by capturing the controller, instruction

decoder and datapath of the processor. Capturing the instruction decoder significantly

complicates these ADLs. Additionally, extracting the high level instruction behaviors

 10

from these ADLs for the compiler is very complex and can only be done for limited

architectural features.

Getting a fixed architecture model as input is a common assumption in retargetable

compilers, mostly used for ASIPs. But usually in these compilers the architecture model

is described in terms of instructions, which is a much higher level of abstraction than the

structural details of the architecture. UDL/I [25] is an HDL that captures the architecture

at the Register-Transfer (RT)-level. A target specific compiler can be generated based on

the instruction set extracted from the UDL/I description. However, UDL/I cannot support

architecture with any instruction level parallelism. Compilers such as RECORD [58] [59]

and CHESS [32] use a structural description of architecture but still need to extract the

higher level instruction information for using in the compiler. The RECORD compiler

extracts behavioral model of instructions from MIMOLA HDL [51] [63]. They assume a

Horizontal Microcode Architecture (HMA) [66] with single cycle operation. They

process the structure of the datapath from destination storages towards source storages to

extract valid register transfers (RTs). After analyzing the controller, they reject illegal

RTs that do not correspond to an instruction, and use the remaining RTs in the compiler.

This approach was suitable for architecture implementation but had two drawbacks: (a)

they did not support pipelined datapaths or multi-cycle units, and (b) the designer had to

describe the controller explicitly. The CHESS compiler uses the nML language [2] to

extract the instruction-set graph (ISG) that captures structural resources in the

architecture that are used by each instruction. In both of these approaches, (a) the

controller and instruction decoder must be explicitly specified in the input format, and (b)

the compiler must analyze the controller to extract the instruction behaviors. Hence, not

 11

only the input descriptions of these approaches are very complex, it is very difficult to

extract the instructions as well. As a result, supported architectural features are limited.

Similar to MIMOLA, the TIPI (Tiny Instruction-set Processors and Interconnect) [68]

targets statically-scheduled HMAs with single-cycle instructions. The main difference is

that instead of relying on specification of the controller, the TIPI uses the speciation of

non-deterministic atomic actions on architectural state and outputs. While MIMOLA uses

binary decision diagrams (BDDs) [57] to extract the valid instructions, in TIPI they

extract the instruction-set as a set of operations and conflict table from the

programmability constraint descriptions using Boolean satisfiability (SAT) algorithm.

Cycle-accurate simulator and HDL generation from TIPI has been reported, but it does

not have a compiler and all programming must be done manually. Retargetable

approaches such as LISA [4] [48] and EXPRESSION [3] [53] use a behavioral instruction

description mixed with structural architecture information and mainly focus on code

generation and simulation. Absence of implementation details in the input description of

these techniques degrades the quality of their recently added HDL generation. Tensilica

 [70] has a set of extensible processors and uses a proprietary language called TIE to

describe the new custom instructions. This language is only for generating the RTL of the

custom instruction rather than automatically detecting the usage of the custom

instructions in the program by compiler. The programmer should explicitly use the

custom instructions in the program in order to utilize them.

Before RISC processors become popular, microcode processors [1] [66] were

extensively studied for several years. Microcodes are mainly used inside processors for

implementing complex instructions or for controlling programmable coprocessors such as

 12

PICO [36] [61] and ARM OptimoDE [45], [35]. In many processors, the instruction does

not operate directly on the internal resources, and instead is decoded to a sequence of

microcodes. In some machines (Motorola 68000, [62]) the microcode instructions are

also translated to a sequence of nanocode commands, which are in fact the Control

Words (CWs) directly controlling the datapath resources in every cycle [30] [67]. In such

machines, microcode and nanocode programs are manually developed and stored in a

ROM in the processor.

Instead of hard-coding the nanocode into the processor, if we expose them for

programming the datapath, then we will have the most flexible way of controlling the

resources of datapath and also support far more complex datapaths than what HLS

techniques can generate. Nanocode exposes all structural details of datapath, therefore

manual programming at nanocode level is not practical, and also the compilation

techniques must be upgraded to deal with all of the low-level structural details of the

datapath. Furthermore, if we develop such a compiler in a way that datapath structure and

timing details can be described and used as input to the compiler, then we can have a

design flow in which datapath is specified and application is mapped directly on the

datapath. This idea leads us to the NISC Technology and the cycle-accurate compiler at

the core of it.

The NISC cycle-accurate compiler generates code as if each basic block of program

is executed with one custom instruction. A basic block is a sequence of operations in a

program that are always executed together. Ideally, for each basic block we should have

one instruction that reads the inputs of basic block from a storage (e.g. register file) and

computes the outputs of basic block and stores them back. The large number of basic

 13

blocks in a typical program prevents us from using an ASIP approach to achieve the

above goal. To solve this problem, in NISC instruction decoding is moved from hardware

to the compiler. In ASIP, after reading the binary of a custom instruction from memory, it

is decoded into a set of control words (CWs) that control the corresponding custom

datapath and executes the custom functionality. Instead of having too many custom

instructions and then relying on a large instruction decoder to generate CWs in hardware;

in NISC the CWs are generated in compiler by directly mapping each basic block onto

the custom datapath. Therefore, the compiler can construct unlimited number of custom

functionalities utilizing both horizontal and vertical parallelism of the input program. If

the datapath is designed to improve the execution of certain portions of program, the

NISC compiler will automatically utilize it. Since the compiler is no longer limited by the

fixed semantics of instructions, it can fully exploit datapath capabilities and achieve

better parallelism and resource utilization.

1.3 NISC Technology

It was explained in the beginning of chapter that there is a gap between designer

productivity and design quality that can be achieved with current technologies. There is

also a disconnect in the spectrum of design complexities that the ASIP and HLS

technologies can be used for. The goal of NISC technology is to fill this gap and provide

a technology that is applicable across a wide range of design complexities (Figure 1.4).

The core idea in NISC is to specify the datapath and map the application directly on

the datapath to generate the controller. In contrast to ASIP, the complexity of datapath

and final design can be reduced and customized to match exactly the requirements of the

application. In HLS, designer needs guess work, implicit tricks, or coding styles in the

 14

input source code in order to control non-functional parameters such as area, power, and

clock frequency. Such non-functional parameters cannot be explicitly controlled in the

high level C code which only captures the functionality of the design. Instead, in NISC,

the functionality is captured in standard ANSI C (or potentially other similar un-timed

high level languages), and other non-functional parameters are captures and controlled

via the datapath description.

Pr
od

uc
tiv

ity

Design Quality

ASIP

RTL

NISC Technology
(No-Instruction-Set-Computer)

Processor
(software)

HLS

Figure 1.4. NISC: filling the gap between designer productivity vs. design quality

As we mentioned in Section 1.2, NISC architecture style can look like a processor

except that instruction decoder is removed and its job is moved from hardware to

compiler. Over the past years, the trend of processor design has been to give compiler

more control over the processor. This is more evident in transition from CISC (Complex

Instruction Set Computer) to RISC (Reduced Instruction Set Computer) and from

Superscalar to VLIW (Very Long Instruction Word) processors. While in CISC complex

functionalities could be executed with complex instructions; in RISC the compiler uses

simpler instructions to execute those complex functionalities in software. Similarly, while

in RISC and superscalar machines operations were scheduled in hardware, in VLIW

machines schedule of operations is determined statically by compiler in software.

Increasing the role of compiler and its control over the processor has several benefits:

 15

• The compiler can look at the entire program and hence has a much larger

observation window than what can be achieved in hardware. Therefore, much

better analysis can be done in compiler than hardware.

• More complex algorithms (such as instruction scheduling, register renaming) can

be implemented in compiler than in hardware. This is because first, the compiler

is not limited by the die size and other chip resources; and second, compiler’s

execution time does not impact the application execution time. In other words,

compiler runs at design time, while hardware algorithms run during application

execution.

• The more functionality we move from hardware to compiler, the simpler the

hardware becomes, and the less the runtime overhead is. This has a direct effect

on area and power consumption of the circuit.

In No-Instruction-Set-Computer (NISC) technology, compiler not only constructs

functionalities and schedules operations, it is also responsible to decode operations into

control words that control the hardware and execute the program. In NISC, the compiler

determines both the schedule of parallel independent operations (horizontal parallelism),

and the logical flow of sequential operations in the pipeline (vertical parallelism). The

compiler generates the control words (CWs) that must be applied to the datapath

components at run time in every cycle. In other words, in NISC, all of the major tasks of

a typical processor controller (i.e. instruction decoding, dependency analysis, and

instruction scheduling) are done by the compiler statically. Since, in NISC, the compiler

decides what the datapath should do at every clock cycle, we call it a cycle-accurate

compiler. The NISC cycle-accurate compiler compiles the application directly to the

 16

datapath. It can achieve better parallelism and resource utilization than conventional

instruction-set based compilers.

NISC technology can also help low-power application-specific processor design,

because: (a) the compiler-oriented control of the datapath, inherently minimizes the need

for runtime hardware-based control, and therefore, reduces the overall power

consumption of the design; (b) NISC technology allows datapath customizations to

reduce total number of cycles and therefore total energy consumption. The extra slack

time can also be used for voltage and frequency scaling, which result in more savings;

and (c) NISC does not limit the number of custom functionalities that can be

implemented on its datapath because instead of using custom instructions and then

relying on the decoder in hardware to generate the control signals, in NISC the compiler

generates the control signal values.

Of course, moving functionality from hardware to compiler means that the compiler

becomes more complex and new problems and challenges must be solved. In the rest of

this thesis, I present the main new challenges in a compiler for NISC Technology and

present my solutions.

1.4 Contributions of this thesis

The NISC idea was first introduced as the single, necessary, and sufficient

computation component for design of systems-on-chip [18]. In NISC design approach,

the datapath is specified and the controller is generated by mapping the application

directly on the datapath without using any instruction-set. To realize the NISC idea,

several challenging categories of problems must be solved. Mainly we need:

 17

• Techniques for efficiently designing and customizing a datapath for an application

• Techniques for efficiently compiling any application on any given datapath

• Techniques for efficiently synthesizing a controller from the output of compiler

and then generating synthesizable code for different target implementations.

In this thesis I mainly focus on clarifying the details of the NISC architecture as well

as its compilation problems. The goal of my research was to clearly define what goes into

the hardware and what must be done by compiler, and then implement a practical

compiler that runs fast enough while supporting the features necessary for designing a

NISC component to be used in a system. Accordingly, I have identified and addressed the

following problems:

1. I have defined what exactly the execution semantics of NISC architecture is, how

to model the architecture, what information must be captured in the model to

enable compilation, and how the control bits are organized in the control word.

2. Once we have the model, in addition to the standard compilation techniques, we

also new compilation algorithm that can incorporate all low-level structural

details of the datapath. I present a scheduling and binding algorithm that supports

operation parallelism, pipelined/multi-cycle operations, operation chaining, and

heterogeneous pipeline and data forwarding.

3. It is important to enable the designer to access some low-level resources directly

from the C code. This is needed for example for accessing specific registers or

ports in the NISC datapath, or accessing functional units whose functionality

cannot be represented by any of the operators in the C (or other high level)

language. To solve this problem in processors, programmers use assembly

 18

instructions. However, NISC does not have instructions and hence cannot have

assembly. Therefore, I present an alternative mechanism that allows low-level

programming in the C language.

4. A NISC must support interrupt. However, since NISC is a statically-scheduled

nanocode machine, it cannot be interrupted arbitrarily. I propose a safe and low-

overhead mechanism for implementing the interrupts.

5. To use NISC in a system, it should be able to communicate with other

components and communication protocols. For some protocols, NISC must

adhere to a cycle-accurate and timed behavior. Since C and other high level

languages are un-timed, we need to find a way to support timed behavior without

requiring any language extensions. I show how the presented techniques in this

thesis are sufficient enough for describing different communication protocols.

As the result of this PhD thesis a working cycle-accurate NISC compiler has been

developed. However, to actually use the NISC technology and evaluate its different

aspect several other tools in addition to the compiler were necessary. There tools have

been developed through collaboration of several people and are now available for

download from NISC Website [47]. Furthermore, the development of each experiment

and benchmark, from converting the standard C code to an embedded implementation

down to implementing the final results in hardware, involved several people. Some of the

reported results in this thesis, such as area and clock frequency numbers, are not a direct

output of the compiler but are included form other people’s work in order to provide

more accurate analysis and comparison.

 19

Chapter 2. NISC
Architecture

A NISC architecture is composed of a datapath and a controller. The datapath of

NISC can be simple or as complex as datapath of a processor. The controller drives the

control signals of the datapath components in each clock cycle. These control values are

generated by the NISC compiler. These values are either stored in a memory or generated

via logic in the controller. Both the controller and the datapath can be pipelined. Figure

 2.1 shows a sample NISC architecture with a pipelined datapath that has partial data

forwarding, multi-cycle and pipelined units, as well as data memory and register file.

Figure 2.1. A sample NISC architecture

 20

The controller has a fixed template and implements one FSM produced by compiler.

The FSM must be as simple as possible to provide maximum flexibility and control over

datapath for the compiler. Changes in the datapath are automatically incorporated by the

compiler, but changes in the controller may require changing the compiler itself. As we

mentioned in Chapter 1, the goal of NISC is to enable customizations to exactly match

the architecture to the requirements of the application. Therefore the architecture features

must be controlled by adding/removing components to/from datapath, and the controller

must be kept as simple as possible without imposing any minimum complexity overhead.

Figure 2.2. A typical NISC controller

For small size programs, the control values can be generated via logic in the

controller, for example using flip-flops, etc. For larger applications, or for enabling

 21

reprogrammability, a memory based controller can be used which stores the control

words in some sort of memory. Figure 2.2 shows a typical NISC controller which is

composed of a Program Counter (PC) register, an Address Generator (AG), a Control

Memory (CMem), and a Link Register (LR). In each cycle, a new control word appears

on the CW port of the controller. A control word contains one or more constant fields that

are used as constants in the datapath or as offset for a jump. The controller itself has some

control bits that come from CW. For example in Figure 2.2, control bits isJump,

isConditional, isDirect, and isCall come from CW. The LR register stores the return

address when executing a function call. In the prolog of every function, the LR value is

read and pushed on the stack, and then in the epilog of that function, the return address is

popped from stack and passed as a direct jump (i.e. isJump=1 and isDirect=1).

d=(a+b)×c
Assume:
 a=RF(1), b=RF(2), c=RF(3), d=RF(4)

Cycle CW
1 r1=RF(1); r2=RF(2);
2 r4=ALU(+,r1, r2); r5=RF(3);
3 r6=MUL(*,r4, r5);
4 RF(4)=r6;

Figure 2.3. Statically scheduled control words

To execute the program on a given datapath, the corresponding control words are

statically scheduled at compile time. Figure 2.3 shows the scheduled control words for

executing a simple expression on the given datapath. The actual control words contain

control bits that configure the corresponding resources to do the required task, e.g. set the

 22

load of a register to load a new value in a certain cycle; or select a certain operation from

a functional unit in a certain cycle.

 In presence of controller pipelining (e.g. PC and Status registers in Figure 2.2 and

Figure 2.1), the compiler should also make sure that the branch delay is considered

correctly and is filled with other independent operations. Detail of the compilation

algorithm is presented in Chapter Chapter 4.

Application

IDE

Code
Refinement

Datapath

GUI

Datapath
Refinement

Datapath Generator
(C à GNR)

Synthesis Backend

NISC Compiler
(C+GNR à FSM)

RTL Generator
(GNR+FSM à RTL)

RTL

Component/
Template
Library

Figure 2.4. NISC design flow

Figure 2.4 shows the design flow for designing a custom NISC for a given

application. In NISC, the controller is generated after compiling the application on a

given datapath. Therefore both the application and the datapath description are

considered input to the NISC cycle-accurate compiler. The datapath can be generated

 23

(allocated) using different techniques. For example, it can be an IP, reused form other

designs, or specified by the designer. The datapath can also be generated automatically

based on the application behavior. The datapath is captured in the GNR (Generic Netlist

Representation) format [12] which describes the datapath as a netlist of components and

assigns different attributes to each component. A component in datapath can be a register,

register-file, bus, multiplexer, functional unit, memory etc. The functionalities of

components are associated with timing information of corresponding control values.

The GNR description of the datapath and the high level description of the application

(e.g. C code) are then given as input to the NISC compiler. The NISC compiler, maps the

application directly on the given datapath and generates a Finite State Machine (FSM)

that determines the behavior of datapath in each clock cycle. The NISC compiler applies

a combination of traditional compilation algorithms as well as HLS techniques,

specifically resource scheduling and resource binding. At the end, the complier generates

the contents of data memory (if any) and also uses the FSM to generate the stream of

control values. The RTL generator, first synthesizes a controller from the output of

compiler, and then uses the datapath information to generate the final synthesizable RTL

design (described in Verilog). This RTL is then used for simulation (validation) and

synthesis (implementation). After synthesis and Placement and Routing (PAR), the

accurate timing, power, and area information can be extracted form the layout and used

for further datapath refinement. For example, the user may add functional units and

pipeline registers, or change the bit-width of the components and observe the effect of

modifications on precision of the computation, number of cycles, clock period, power,

and area. In NISC, there is no need to design the instruction-set because the compiler

 24

automatically analyzes the datapath and extracts possible operations and branch delay.

Therefore, the designer can refine the design very fast.

As a unique feature of the NISC design flow in Figure 2.4 is that it enables the

designer to iteratively refine and improve the results (as depicted in Figure 2.5). In this

flow, the designer can start with an initial application description and use an initial

datapath for executing the application and generate initial results. Then the designer can

iteratively modify the application or the datapath and use the NISC toolset to generate a

new set of results. An important benefit of this approach is that in each iteration the

designer can focus on one quality metric. For example, the available parallelism in the

application can be improved in one iteration, the clock frequency of the datapath can be

improved in another iteration separately, and then the area of the datapath can be

improved in yet another separate iteration. In this way, multi-optimizations can be

applied to the design without one optimization complicating another. At the end, from

several design points, the designer can select the one that best meets the design

requirements.

offset

status

const

address

C
WPC CMem

AG

status

B1
B2

ALU Memory

RF

MUL

B3

const

status

RF

OR

ALU
AR

Mem
DR

offset

CMem

C
WPC

AG P

bL

Sum

Add

aL

Mul

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 sum=0;
 for(int k=0; k<8; k++)
 sum = sum + A[i][k] ×B[k][j];
 C[i][j] = sum;
 }

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 i8 = i × 8;
 sum = *(A + i8) × *(B + j);
 sum += *(A + i8 + 1) × *(B + 8 + j);
 ...
 C[i][j] = sum;
 }

NISC
Toolset

Results

CDCT7 vs. NMIPS
10 times performance improvement
1.3 times power reduction
12.8 times energy savings
3 times area reduction

0
0.1
0.2
0.3
0.4

0.5
0.6

0.7
0.8
0.9

1
1.1

NMIPS CDCT1 CDCT2 CDCT3 CDCT4 CDCT5 CDCT6 CDCT7

N
or

m
al

iz
ed

 V
al

ue
s

Normalized exec. Time Normalized power
Normalized area Normalized energy

Code
Refinement

Datapath
Refinement

NISC

Application

NISC

Application
NISC

Toolset
Results

Iterative design & refinement

Comparison of
Customized DCT (CDCT) datapaths

DCT DCT

Figure 2.5. Iterative design using NISC Technology

 25

Chapter 3. Modeling NISC
architecture for compilation

In NISC, one of the inputs of the compiler is the architecture description. To describe

the architecture we need both a modeling approach and a language. The model

determines what information about the architecture must be captured and how this

information is organized, while the language provides building blocks and composition

rules to capture these information in text. Both model and language must cover all of the

needs of the NISC toolset (Figure 2.4). Details of such a complete model are outside of

the scope of this thesis. A subsystem of multiple NISC components can be described in

the GNR (Generic Netlist Representation) [12]. GNR is a multi-aspect description format

that is used by all the NISC toolset. GNR is an XML [74] based format and used XML

Schema [73] for validation and enforcing the structural rules of GNR. In this chapter I

focus on the parts of the model that are needed for compilation (i.e. compilation aspect)

and use the GNR syntax to describe the examples2.

The compiler aspect of the component models must essentially provide operation

information of the components as well as their connectivity. In the compiler, we need to

2 The GNR syntax and its loader is developed by Bita Gorjiara at CECS in UC Irvine.

 26

map the CDFG [6] and variables of the program to the given NISC architecture. The

NISC cycle-accurate compiler must schedule operations, bind variables to storages, and

bind operations to functional-units. For variable binding, we need the mapping between

variable types (e.g. integer, floating point, character, …) and storages that can hold a

variable of a particular type. For operation scheduling and binding, we need the mapping

between operations and datapath resources that implement a particular operation. The

latter mapping, must also provide the timing of the operation on a particular resource as

well as the control values (if any) that configure the resource to execute the particular

operations. As well as considering these requirements, when developing the model, we

should also consider what information must be explicitly captured in the model and what

information can be efficiently extracted from the model automatically. During

development of the NISC model, the general idea was that we capture the detailed

architecture information needed for generating good HDL and then annotate related

information that otherwise would be very difficult, complex, time consuming, or even

impossible to extract automatically.

In NISC model, each component has a set of input, output, and control ports. The

architecture is modeled as a netlist which includes instances of components and

connection that connect an output port of one component to an input port of another

component. In a hierarchical netlist, a component may also have internal netlist. As such,

the connections may also be defined between ports the component and the ports of

components in its internal netlist. Each component has a typed associated with it, and this

type can be one of: register, register-file, multiplexer, tri-sate buffer, bus, functional-unit,

memory, controller, module, and NiscArchitecture. NiscArchitecture is the top level

 27

component that contains all of the architecture information. It is a special case of a

module. A module is a hierarchical component that can have an internal netlist. A

component may provide different aspects for different tools. The information of each

aspect depends on the component type. The component information required for

compilation is stored in it compiler aspect.

Note that in an RTL description the above component types are not explicitly

differentiated, thus, many synthesis tools must detect component types by relying on the

description style, which is difficult to formulate and enforce and whose definition varies

from vendor to vendor! This important difference between the NISC model and a

structural HDL is the main enabler of the NISC compiler to understand the behavior of

the datapath and compile on it.

Figure 3.1. Block diagram of a simple NISC architecture

3.1 NiscArchitecture: the top module of design

The NiscArchitecture component type is the top module that captures all information

about a NISC architecture. The ports of this component are used to connect it to rest of a

system. Figure 3.2 shows the GNR description of a simple NISC component shown in

Figure 3.1. The datapath of a NISC architecture can have several instances of each

component type. A component instance has a unique name and a type name that refers to

 28

a component description in the library. The datapath description also includes clock and

control connections (between CW port of the controller and the control ports of

components). The GNR parser automatically adds these connections if they are not

already specified [12].

<CustomIP type="simpleIP">
 <Ports>
 <Clock n="clk" bitWidth="1"/>
 <InPort n="reset" bitWidth="1"/>
 <InPort n="dm_r" bitWidth="32"/>
 <OutPort n="dm_addr" bitWidth="32"/>
 <OutPort n="dm_w" bitWidth="32"/>
 <OutPort n="dm_readEn" bitWidth="1"/>
 <OutPort n="dm_writeEn" bitWidth="1"/>
 </Ports>
 <Netlist>
 <Components>
 <Instance n="controller" type="Controller"/>
 <Instance n="RF" type="RF2x1">
 <SetParam n="BIT_WIDTH" val="32"/>
 <SetParam n="REG_COUNT" val="32"/>
 </Instance>
 <Instance n="In0" type="Mux2"/>
 <Instance n="In1" type="Mux2"/>
 <Instance n="Out0" type="Mux4"/>
 <Instance n="comp" type="Comparator"/>
 <Instance n="alu" type="ALU"/>
 <Instance n="mem" type="DataMemProxy"/>
 </Components>
 <Connections>
 <Conn src="controller" sPort="cw" dest="controller" dPort="offset" extend="signed" s="9" e="0"/>
 <Conn src="controller" sPort="cw" dest="In0" dPort="i0" extend="signed" s="9" e="0"/>
 <Conn src="comp" sPort="o" dest="controller" dPort="status" s="0" e="0"/>
 <Conn src="Out0" sPort="o" dest="controller" dPort="address"/>
 <Conn src="Out0" sPort="o" dest="RF" dPort="w0"/>
 <Conn src="RF" sPort="r0" dest="In0" dPort="i1"/>
 <Conn src="RF" sPort="r1" dest="In1" dPort="i0"/>
 <Conn src="In0" sPort="o" dest="comp" dPort="i0"/>
 <Conn src="In1" sPort="o" dest="comp" dPort="i1"/>
 <Conn src="comp" sPort="o" dest="Out0" dPort="i0"/>
 <Conn src="In0" sPort="o" dest="alu" dPort="i0"/>
 <Conn src="In1" sPort="o" dest="alu" dPort="i1"/>
 <Conn src="alu" sPort="o" dest="Out0" dPort="i1"/>
 <Conn src="In0" sPort="o" dest="mem" dPort="addr"/>
 <Conn src="In1" sPort="o" dest="mem" dPort="w"/>
 <Conn src="mem" sPort="r" dest="Out0" dPort="i2"/>
 <Conn src="" sPort="dm_r" dest="mem" dPort="dm_r"/>
 <Conn src="mem" sPort="dm_addr" dest="" dPort="dm_addr"/>
 <Conn src="mem" sPort="dm_w" dest="" dPort="dm_w"/>
 <Conn src="mem" sPort="dm_readEn" dest="" dPort="dm_readEn"/>
 <Conn src="mem" sPort="dm_writeEn" dest="" dPort="dm_writeEn"/>
 <!--GNR parser automatically adds clock and control connections -->
 </Connections>
 </Netlist>
 <Compiler-aspect defaultDMem="mem" clockPeriod="1" pointerByteSize="4">
 <CwFields n="cwFields">
 <Field n="const0" bitWidth="10"/>
 <CtrlField component="RF" ctrlPort="we"/>
 <CtrlField component="RF" ctrlPort="wa"/>
 <CtrlField component="RF" ctrlPort="ra0"/>
 <CtrlField component="RF" ctrlPort="ra1"/>
 <CtrlField component="alu" ctrlPort="ctrl"/>
 <CtrlField component="comp" ctrlPort="ctrl"/>
 <CtrlField component="mem" ctrlPort="ctrl"/>
 <CtrlField component="In0" ctrlPort="sel"/>
 <CtrlField component="In1" ctrlPort="sel"/>
 <CtrlField component="Out0" ctrlPort="sel"/>
 </CwFields>
 <StackPointer><RegisterFile ref="RF" index="0"/></StackPointer>
 <FramePointer><RegisterFile ref="RF" index="1"/></FramePointer>
 </Compiler-aspect>
</CustomIP>

Figure 3.2. GNR description of the NISC in Figure 3.1

 29

3.1.1 Compiler aspect of NiscArchitecture
In addition to the netlist information of the NiscArchitecture the compiler may also

need extra information that is captured in the compiler aspect of the NiscArchitecture.

The datapath of NISC can be customized and simplified to exactly match the

requirements of the application. Therefore, some of the information in the compiler

aspect is optional. If such information is not provided in the model, then the

corresponding features will be disabled in the compiler. In the reset of this section, we

explain the compiler aspect information of NISC architecture.

3.1.1.1 Main memory
The compiler aspect of the NiscArchitecture component, determines one memory

component in the datapath as the main memory. However, a datapath can have more than

one memory component, but the user must directly access the rest (this mechanism is

explain in Chapter Chapter 5). All normal memory (load/store) and stack (push/pop)

operations are bound to the specified main memory. If the compiler aspect does not

specify any memory component as the default main memory, then memory and stack

operations will be disabled and compiler will generate error if these operations are

detected in the program. Consequently, the function calls will also be disabled because

they depend on stack operations.

3.1.1.2 Clock period length
The clock period length must be specified in term of the time unit. This value along

with the operation delays is used by the compiler to determine if multiple operations can

be chained within one cycle, or if execution of one operation must expand across multiple

clock cycles. For example, if the clock period is 1 unit and a multiply operation delay is 2

 30

units, then the multiply is scheduled to last two cycles before the results can be used by

another operation or written back to register file.

3.1.1.3 Size of pointers
The size of pointers is used by the compiler when handling memory accesses and

pointer calculations. For example, when loading a pointer to pointer variable (e.g. int**

pInt; in C), the compiler needs to know what kind of load instruction it should use.

Also, when performing pointer calculations the pointer size must be considered. Figure

 3.3 shows an example of how the point size affects the compiler output.

int * p1;
int ** p2;
p1 = p1 +2;
p1 = *p2;

t1=ADD(p1, 8);
Write(p1, t1);
t2=LoadI4(p1);
Write(p2, t2);

Compile:
Pointer size=4

Figure 3.3. Compiling pointer calculations to 3-address code with 4 byte pointers

3.1.1.4 Special registers
To support function calls, the Stack Pointer (SP) and the Frame Pointer (FP) registers

must be specified a register or a register-file element. The FP register always points to the

start of the stack of a function, while SP register points to the end of the stack. Figure 3.4

shows how these registers are utilized for function calls.

void f1()
{
 f2();
}

f1: SP=ADD(SP, f2_parameterSize);
JUMP(f2_startAddress);

f2_ret:
SP=SUB(SP, f2_parameterSize);

...
f2: FP=SP

SP=ADD(SP, f2_stackSize);
...
RETURN;

Compile

Figure 3.4. Using SP/FP registers in the 3-address code of function call

 31

3.1.1.5 Structure of control words
The structure of the control words determines (a) the bit-width and number of

constant fields, and (b) the index of control bits of each component in the control word.

The compiler uses this information to convert the FSM into the corresponding control

value stream. For example in Figure 3.2, the cwField section of the compiler aspect

specifies that the lower 10 bits of the control word are used for constant values and the

rest of control word is filled with the control signals of the components. Therefore, the

corresponding control word looks like Figure 3.5. According to the GNR description of

Figure 3.2, the first 10 bits of the CW are first sign extended and then connected to the

In0 multiplexer which provides a constant field for operations with a constant operand.

39 37 36 35 30 30 26 21 16 11 10 0

 Out0_sel In1_sel In0_sel mem_ctrl comp_ctrl alu_ctrl RF_ra1 RF_ra0 RF_wa RF_we const0
 Total: 39-bit CW

Figure 3.5. Control word structure according to GNR of Figure 3.2

Figure 3.6 shows the structure of the NISC model after control word structure is

constructed and proper control connections are added between CW and control ports of

the components. A sign extender component is also added for accessing constant filed.

Figure 3.6. NISC model of Figure 3.1 after loading and adding control connections

 32

3.2 Basic components

The basic component types include register, register-file, multiplexer, tri-sate buffer,

bus, functional-unit, memory, and controller. Depending on the component type, the

compiler aspect of a component may define one or more machine actions (MA). The

machine actions are the very low level functionalities of the components. The compiler

constructs different behaviors by composing the MAs and scheduling them in proper

clock cycles.

 There are four types of machine actions: Read, Write, Transfer and Execute. The

Read and Write MAs describe access to a registered storage, while Transfer describes

data movement from one port to another. The Execute MA represents the operations that

a component can perform. Each MA may have at most one output which is associated

with one output port of the corresponding component. Similarly, an MA may have

several inputs each of which is associated with an input port of the corresponding

component. Each MA also defines the timing as well as the control values of each control

port of the corresponding component. Finally, if an Execute MA specifies number of

pipeline stages, then it is considered as a pipelined operation. Otherwise, if the delay of

that MA is longer than the clock period, then it is considered as multi-cycle operation.

Basic components are divided into four groups: (a) register and register-file components

can only define Read and Write MAs; (b) multiplexer, tri-sate buffer, bus components

can only define Transfer MAs; (c) functional-unit, memory components can only define

Execute or Transfer MAs; and (d) controller components defined a set of predefined

Execute MAs. For example Figure 3.7 shows the GNR description of a small ALU that

implements three operations, hence its control port is two bits wide (supporting up to four

 33

operations). Although RTL generation for NISC is not part of this thesis, it is worth

mentioning that, in many cases, the RTL description of a component can be easily

generated from the MA descriptions in its compiler aspect.

<FU typeName="ALU">
 <Params>
 <Param n="BIT_WIDTH"/>
 <Param n="DELAY" val="1"/>
 </Params>
 <Ports>
 <InPort n="i0" bitWidth="{@BIT_WIDTH}"/>
 <InPort n="i1" bitWidth="{@BIT_WIDTH}"/>
 <OutPort n="o" bitWidth="{@BIT_WIDTH}"/>
 <CtrlPort n="ctrl" bitWidth="2" default="00"/>
 </Ports>
 <Compiler-aspect>
 <Operations>
 <Operation n="Add" delay="{@DELAY}">
 <Output port="o"/>
 <Input port="i0"/>
 <Input port="i1"/>
 <Ctrl val="00" port="ctrl"/>
 </Operation>
 <Operation n="Sub" delay="{@DELAY}">
 <Output port="o"/>
 <Input port="i0"/>
 <Input port="i1"/>
 <Ctrl val="01" port="ctrl"/>
 </Operation>
 <Operation n="Not" delay="{@DELAY}">
 <Output port="o"/>
 <Input port="i0"/>
 <Ctrl val="10" port="ctrl"/>
 </Operation>
 </Operations>
 </Compiler-aspect>
</FU>

Figure 3.7. GNR description of an example ALU

As an example, assume that the compiler needs to implement an addition between

two variables in C code on the datapath of Figure 3.1. For each operand in the DFG of the

program, the compiler must use a Read MA from register file RF, and a Transfer MA

through multiplexer In0 or In1. Then, an Execute MA is scheduled on the alu and

 34

result is written back by using a Transfer MA through multiplexer Out0 and a Write MA

on the RF. If the clock period is longer than the sum of all these machine-actions, then the

ADD operation in DFG takes one cycle, at most; otherwise it takes multiple cycles.

In addition to Read and Write MAs, the register and register-file components specify

the variable types that they can store. During compilation, the compiler uses this

information to bind local variables to proper register storage. Global variables are bound

to the main memory.

3.3 Hierarchical components

The hierarchical components are used to simplify the construction of new

components from the available ones. This is done with the module component type in the

NISC architecture model. For example, consider the full GNR description of a two input

multiplexer (Mux2) shown in Figure 3.8. We can repeat this whole code to create a four

input multiplexer (Mux4); however different aspects of the components must be again

described for every tool. Another option is to construct a Mux4 from three Mux2

components as shown in Figure 3.9 and its corresponding GNR shown in Figure 3.10. At

compile time, every time a data transfer is needed from an input port of a Mux4

component to its output port, the compiler schedules several Transfer MA trough

different internal multiplexers of this module.

For larger multiplexers built using a module, the increased number of MAs that the

scheduler should schedule for a single data transfer may slow down the compiler. To

prevent this negative effect, for frequently used module components, we can add

compiler aspect that describes the internal behavior of the module and prevent the

 35

compiler from going further down the hierarchy for generating the control bits. Figure

 3.11 shows the updated version of Figure 3.9 with the compiler aspect information.

Especially for more complex models, this flexibility of modeling allows the designer to

choose where to spend the most time to gain the most productivity. The GNRs in Figure

 3.9 and Figure 3.11 will lead to exactly same RTL results at the end.

<Mux type="Mux2">
 <Params>
 <Param n="BIT_WIDTH"/>
 <Param n="DELAY" val="0"/>
 </Params>
 <Ports>
 <InPort n="i0" bitWidth="{@BIT_WIDTH}"/>
 <InPort n="i1" bitWidth="{@BIT_WIDTH}"/>
 <CtrlPort n="sel" bitWidth="1" default="x"/>
 <OutPort n="o" bitWidth="{@BIT_WIDTH}"/>
 </Ports>
 <Annot_verilog>
 <Synthesis topModuleName="Mux2">
 <VerilogParams>
 <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/>
 </VerilogParams>
 <VerilogCode>
 <File n="Mux2.v"/>
 </VerilogCode>
 </Synthesis>
 <Simulation topModuleName="Mux2">
 <VerilogParams>
 <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/>
 </VerilogParams>
 <VerilogCode>
 <File n="Mux2.v"/>
 </VerilogCode>
 </Simulation>
 </Annot_verilog>
 <Annot_compiler>
 <Transfers>
 <DataTransfer inPort="i0" outPort="o" transferDelay="{@DELAY}">
 <Ctrl val="0" port="sel"/>
 </DataTransfer>
 <DataTransfer inPort="i1" outPort="o" transferDelay="{@DELAY}">
 <Ctrl val="1" port="sel"/>
 </DataTransfer>
 </Transfers>
 </Annot_compiler>
</Mux>

Figure 3.8. GNR description of a Mux2 multiplexer

 36

Figure 3.9. Construction of Mux4 from several Mux2 components

<Mux type="Mux4">
 <Params>
 <Param n="BIT_WIDTH"/>
 <Param n="DELAY" val="0"/>
 </Params>
 <Ports>
 <InPort n="i0" bitWidth="{@BIT_WIDTH}"/>
 <InPort n="i1" bitWidth="{@BIT_WIDTH}"/>
 <InPort n="i2" bitWidth="{@BIT_WIDTH}"/>
 <InPort n="i3" bitWidth="{@BIT_WIDTH}"/>
 <CtrlPort n="sel0" bitWidth="1" default="x"/>
 <CtrlPort n="sel1" bitWidth="1" default="x"/>
 <OutPort n="o" bitWidth="{@BIT_WIDTH}"/>
 </Ports>
 <Netlist>
 <Components>
 <Instanse n="m0" type="Mux2"/>
 <Instanse n="m1" type="Mux2"/>
 <Instanse n="m2" type="Mux2"/>
 </Components>
 <Connections>
 <Conn src="" srcPort="i0" dest="m0" destPort="i0"/>
 <Conn src="" srcPort="i1" dest="m0" destPort="i1"/>
 <Conn src="" srcPort="i2" dest="m1" destPort="i0"/>
 <Conn src="" srcPort="i3" dest="m1" destPort="i1"/>
 <Conn src="m0" srcPort="o" dest="m2" destPort="i0"/>
 <Conn src="m1" srcPort="o" dest="m2" destPort="i1"/>
 <Conn src="m2" srcPort="o" dest="" destPort="o"/>
 <Conn src="" srcPort="sel0" dest="m0" destPort="sel"/>
 <Conn src="" srcPort="sel0" dest="m2" destPort="sel"/>
 <Conn src="" srcPort="sel1" dest="m3" destPort="sel"/>
 </Connections>
 </Netlist>
</Mux>

Figure 3.10. GNR of Mux4 built from several Mux2 components

 37

<Mux type="Mux4">
 <Params>
 <Param n="BIT_WIDTH"/>
 <Param n="DELAY" val="0"/>
 </Params>
 <Ports>
 <InPort n="i0" bitWidth="{@BIT_WIDTH}"/>
 <InPort n="i1" bitWidth="{@BIT_WIDTH}"/>
 <InPort n="i2" bitWidth="{@BIT_WIDTH}"/>
 <InPort n="i3" bitWidth="{@BIT_WIDTH}"/>
 <CtrlPort n="sel" bitWidth="2" default="xx"/>
 <OutPort n="o" bitWidth="{@BIT_WIDTH}"/>
 </Ports>
 <Netlist>
 <Components>
 <Instanse n="m0" type="Mux2"/>
 <Instanse n="m1" type="Mux2"/>
 <Instanse n="m2" type="Mux2"/>
 </Components>
 <Connections>
 <Conn src="" srcPort="i0" dest="m0" destPort="i0"/>
 <Conn src="" srcPort="i1" dest="m0" destPort="i1"/>
 <Conn src="" srcPort="i2" dest="m1" destPort="i0"/>
 <Conn src="" srcPort="i3" dest="m1" destPort="i1"/>
 <Conn src="m0" srcPort="o" dest="m2" destPort="i0"/>
 <Conn src="m1" srcPort="o" dest="m2" destPort="i1"/>
 <Conn src="m2" srcPort="o" dest="" destPort="o"/>
 </Connections>
 </Netlist>
 <Annot_compiler>
 <Transfers>
 <DataTransfer inPort="i0" outPort="o" transferDelay="{@DELAY}">
 <Ctrl val="0" port="sel1" /><Ctrl val="0" port="sel0" />
 </DataTransfer>
 <DataTransfer inPort="i1" outPort="o" transferDelay="{@DELAY}">
 <Ctrl val="0" port="sel1" /><Ctrl val="1" port="sel0" />
 </DataTransfer>
 <DataTransfer inPort="i2" outPort="o" transferDelay="{@DELAY}">
 <Ctrl val="1" port="sel1" /><Ctrl val="0" port="sel0" />
 </DataTransfer>
 <DataTransfer inPort="i3" outPort="o" transferDelay="{@DELAY}">
 <Ctrl val="1" port="sel1" /><Ctrl val="1" port="sel0" />
 </DataTransfer>
 </Transfers>
 </Annot_compiler>
</Mux>

Figure 3.11. Mux4 module with compiler aspect to speed up compilation

3.4 Comparison with other approaches

Model based compilation has be the focus of many retargetable compilers. Rather

than being fixed for a single processor, the retargetable compilers can generate code for a

class of processors usually captured in an Architecture Description Language (ADL)

 38

 [52] [71]. As we explained in section 1.2, all retargetable compilers use instruction

behaviors for compilation. Behavioral ADLs (e.g. LISA [48] and EXPRESSION [3])

explicitly describe the behavior of all possible instructions while structural ADLs (e.g.

RECORD [58] [59], CHESS [32], and MIMOLA [51] [63]) describe the structure of the

processor and hence instruction behaviors must be extracted from them.

The proposed model for the NISC architecture has several advantages over

retargetable compilation models including:

• Previous models are very lengthy and complex because they should either capture

all possible instructions format, or capture the instruction decoder as well as the

datapath. The NISC model only captures the datapath netlist and all combinations

of possible operations are generated by the compiler. For example, if datapath has

two fully connected adder and multiplier units, the NISC model only need to

capture the existence of these two units. However, in an instruction based ADL,

all compilations of ADD, MUL, ADD_MULL, MULL_ADD instructions with

both register operands and constant operands must be described. In a more

complex datapath with more possibilities, this problem becomes worse.

• Behavioral ADLs rarely support hardware generation and only target compilation

or simulation. Even those who generate RTL cannot achieve good hardware

quality because many of the architectural details are missing in the description.

Even the structural ADLs do not capture the architecture in the level of details of

the NISC model (i.e. capturing down to wires, multiplexers, and control signals).

Therefore, the NISC model not only supports compilation, but also is suitable for

generating good quality RTL for hardware implementation.

 39

• All retargetable compilers target a complete processor and none of them can be

used for generating dedicated IP blocks. Approaches such as TIPI [68] that have

attempted to target IP blocks, have paid too much attention to hardware

generation but little to compilation, which has prevented them from generating a

compiler for their approach. The NISC model is a balanced abstraction that

enables both efficient compilation and efficient hardware generation for any

datapath complexity.

• Due to its detailed architectural information, the NISC model enables the

compiler to use operation chaining, multi-cycle or pipelined operations. These

features are supported in NISC by (a) properly describing the architecture

structure and timing information in the model, and (b) a new scheduling algorithm

explained in Chapter 4. None of the other ADLs can directly support these

features.

• All previous compilation models always assume that the data forwarding

connections connect the output of all functional units to all of the inputs of all

functional units. This results in a huge hardware overhead on the final processor.

Only one approach [8] has addressed partial data forwarding and bypass paths.

However, this approach uses operation tables that must describe all permutations

of forwarding paths between all operations, which can be very lengthy. The NISC

model can accurately describe non-uniform data forwarding by only capturing the

actual wires between functional units. The NISC compiler algorithms can then use

this information to utilize bypass paths properly.

 40

• Other modeling approaches for retargetable compilation do not consider the value

of clock period in the model. They only capture timings based on number of clock

cycles. In contrast, the NISC model and the corresponding algorithms also

consider the length of clock period to determine whether operations can be

chained or if an operation takes several cycles. This important feature the means

of readjusting the schedule based on the actual timings collected form a real

implementation.

• Other retargetable compilation approaches typically need one model and

description for mapping operations to assembly instructions and another model

for mapping assembly instructions to their binary values. In other words, one

model for compiler and another model for the linker. By capturing the control

connections in the datapath model, the NISC compiler can directly map the

operations to the corresponding control binary.

 41

Chapter 4. Compilation

In the rest of this chapter we explain the compilation algorithm. From this point on,

any reference to the information of the datapath implies that the model of the NISC

architecture contains that information.

4.1 Overview of compilation algorithm

In this section we illustrate the basis of our scheduling and binding algorithm using

several examples. The input of algorithm is the CDFG of an application, netlist of

datapath components and the clock period of the system. The output is an FSM in which

each state represents a set of Machine Actions (MAs) that execute in one clock cycle. The

set of MAs are later used to generate the states of FSM and the control bits of

components.

As opposed to traditional HSL, we can not schedule operations merely based on the

delay of the functional units. The number of clock cycles (or states) between the schedule

of an operation and its successor depends on both the binding of operations to functional

units (FU) and the delay of the path between corresponding FUs. For example, suppose

we want to map a DFG on a datapath as shown in Figure 4.1. Operation shift-left (>>)

can read the result of operation + in two ways. If we schedule operation + on U2 and

 42

store the result in register file RF, then operation >> must be scheduled on U3 in the next

cycle to read the result from RF through bus B2 and multiplexer M2. Operation >> can

also be scheduled in the same cycle with operation + and read the result directly from U2

through multiplexer M2. Therefore, selection of the path between U2 and U3 can directly

affect the schedule. Since knowing the path delay between operations requires knowing

the operation binding, the scheduling and binding must be performed simultaneously.

+

>>

x y

z a

b
a=x+y;
b=a >> z;

(a) DFG (b) Datapath
Figure 4.1. Different possible schedules for the DFG depending on binding

The basic idea in the algorithm is to schedule an operation and all of its predecessors

together. An output operation in the DFG of a basic block is an operation that does not

have a successor in that basic block. We start from output operations and traverse the

DFG backward. Each operation is scheduled after all its successors are scheduled. The

scheduling and binding of successors of an operation determine when and where the

result of that operation is needed. This information can be used for: utilizing available

paths between FUs efficiently, chaining operations, avoiding unnecessary register file

read/writes, etc.

 43

During schedule, we consider each operation and all of its predecessors, i.e. the sub-

tree of operations behind each operation. Therefore, we need to partition the DFG of the

basic block into sub-trees. To make sure the whole DFG is processed, we start from sub-

tress whose root is an output operation of the basic block. The leaves are input variables,

constants, or output operations from other basic blocks. If the successors of an operation

belong to different sub-trees, then that operation is considered as an internal output and

will have its own sub-tree. Such nodes are detected during scheduling. Figure 4.2 shows

an example DFG that is partitioned into three sub-trees. The roots of the sub-trees (shown

with shaded nodes) are the output operations. The algorithm schedules each sub-tree

separately. If during scheduling of the operations of a sub-tree, the schedule of an

operation fails, then that operation is considered an internal output and becomes the root

of a new sub-tree. A sub-tree is available for schedule as soon as all successors of its root

(output operation) are scheduled. Available sub-trees are ordered by the mobility of their

root. The algorithm starts from output nodes and schedules backward toward their inputs,

therefore more critical outputs tend to be generated towards the end of the basic block

(similar to ALAP schedule).

Figure 4.2. Partitioning a DFG into output sub-trees

During scheduling, different types of values may be bound to different types of

storages (variable binding). For example, global variables may be bound to memory,

local variables to stack or register file, and so on. A constant is bound to memory or the

 44

constant fields in the control word (CW) register, depending on its size. A control word

may have limited number of constant fields (e.g. Figure 3.2) that are generated in each

cycle along with the rest of control bits. These constant fields are loaded into the CW

register and then transferred to a proper location in datapath after sign extension (see

Figure 3.6). The NISC compiler determines the values of constant(s) in each cycle. It also

schedules proper set of MAs to transfer the value(s) to where it is needed.

In the rest of this section, through several examples, we illustrate how the DFG is

partitioned into sub-trees during scheduling. We also show that how the scheduling

algorithm works for simple datapaths as well as those that have feature such as multi-

cycle operation, pipelined operation, heterogeneous pipelining, heterogeneous data

forwarding, and operation chaining.

× ×

+

x y z 2

a b

c
a=x×y;
b=z×2;
c=a+b;

(a) DFG (b) Datapath without pipelining
Figure 4.3. Compiling on a datapath without pipelining

4.1.1 Example: Simple datapath
Consider the example DFG of Figure 4.3(a) to be mapped on the simple datapath of

Figure 4.3(b). Assume that the clock period is 20 units and delays of U1, U2, and busses

are 17, 7, and 1 units, respectively. We schedule the operations of basic block so that all

results are available before last cycle, i.e. 0; therefore, the MAs are scheduled in negative

cycle numbers. In each step of the algorithm, we try to schedule the sub-trees that can

 45

generate their results before a given cycle clk. The clk starts from 0 and is decremented in

each step until all sub-trees of a basic block are scheduled.

When scheduling an output sub-tree, first step is to know where the output is stored.

In our example, assume c is bound to register file RF. We must schedule operation + so

that its result can be stored in destination RF in cycle -1 and be available for reading in

cycle 0. From the list of available functional units (FUs), we first select an FU that

implements + (operation binding). Then we make sure that a path exists between selected

FU and destination RF and all elements of the path are available (not reserved by other

operations) in cycle -1 (interconnect binding). In this example we select U2 for + and bus

B3 for transferring the results to RF. Resource reservation will be finalized if the

schedule of operands also succeeds. The next step is to schedule proper MAs in order to

transfer the value of a to the left input port of U2 and value of b to the right input port of

U2. Figure 4.4 shows the status of schedule after scheduling the + operation. The figure

shows the set of MAs that are scheduled in each cycle to read or generated a value. At

this point, B1 and B2 are considered the destinations to which values of a and b must be

transferred in clock cycle -1, respectively.

clock Scheduled MAs
-1 B1=?; B2=?; B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.4. Schedule of MAs after scheduling + operation

In order to read the values of a and b, we need to schedule them on their

corresponding FU (i.e. U1 multiplier) and then send the result to U2. Since there is no

path between any U1 and U2, then we assume that a and b are stored in register file RF

and will try to schedule them later. Since in cycle -1, we can read from register file, then

we schedule the proper Read MAs from RF and consider a and b as internal outputs.

 46

Figure 4.5 shows the status of schedule after scheduling Read MAs. The sub-tree of c is

now completely scheduled and the resource reservations can be finalized.

clock Scheduled MAs
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.5. Schedule of MAs after scheduling h sub-tree

The results of sub-tress of a and b must have their result ready before cycle -1.

Therefore, the corresponding MAs must be scheduled in or before clock cycle -2 and

write the result in register file RF. We start from a and schedule its sub-tree first. We

need to write the result to RF and choose an FU to perform × operation. We choose

multiplier U1 and schedule the operands from RF to U1 through busses B1 and B2.

Figure 4.6 shows the schedule status after completing the schedule of a.

clock Scheduled MAs
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); RF(a)=B3;
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.6. Schedule of MAs after scheduling a sub-tree

After scheduling a on U1, there are no more multipliers left to schedule operation b.

Therefore, we need to decrement the clock value and try again in cycle -3. In this cycle,

we need multiplier U1, both busses B1 and B2, one register file port, and the constant

filed in the CW. The constant filed is read from CW and is sign extended and then passed

to the proper bus. Since all these resources are available in clock cycle -3, we can

successfully schedule b. The final schedule of the complete DFG of Figure 4.3 is shown

in Figure 4.7.

clock Scheduled MAs
-3 B1=RF(z); B2=CW; B3=U1(B1, B2); RF(b)=B3;
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); RF(a)=B3;
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.7. Schedule of MAs after scheduling DFG of Figure 4.3

 47

4.1.2 Example: multi-cycle operation
Consider the example of Figure 4.3 again but this time, let’s assume that the clock

period is still 10 units, and the delay of U1, U2, and busses are 17, 7, and 1 units,

respectively. In this case, the delay of multiplier U1 is longer than a single cycle. If we

repeat the scheduling steps, everything remains the same as what was explained in

Section 4.1.1. But this time, the schedule of a and b are two cycles. This means their

inputs must remain stable for two cycles, but they can write their results at the end of

second cycle. Figure 4.8 shows the schedule status after scheduling the DFG. Note that

the result in Figure 4.8 is two cycles longer than that of Figure 4.7 but since the clock

period is shorter, it runs overall faster (i.e. 5x10 < 3x20). This shows one of the benefits

of multi-cycle operations, and our algorithm can fully utilize it.

clock Scheduled MAs
-5 B1=RF(z);B2=CW;B3=U1(B1, B2);
-4 B1=RF(z);B2=CW;B3=U1(B1, B2); RF(b)=B3;
-3 B1=RF(x);B2=RF(y);B3=U1(B1, B2);
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); RF(a)=B3;
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.8. Schedule of Figure 4.3(a) DFG with a multi-cycle multiplier

4.1.3 Example: pipelined operation
Consider the example DFG of Figure 4.9(a) to be mapped on the datapath of Figure

 4.9(b) which has a pipelined multiplier. Assume that the clock period is 10 units and

delays of U2 and busses are 7 and 1 units, respectively. Also U1 has two pipeline stages.

This means that U1 takes two cycles to generate its results, but the inputs can change

every cycle, and respectively the output can be read in every cycle. As before, we

schedule the operations of basic block so that all results are available before last cycle,

i.e. 0; therefore, the MAs are scheduled in negative cycle numbers.

 48

×

×

+

x y z 2

a b

c
a=x×y;
b=z×2;
c=a+b;

(a) DFG (b) Datapath without pipelining
Figure 4.9. Compiling on a datapath without pipelining

When scheduling an output sub-tree, first step is to know where the output is stored.

In our example, assume c is bound to register file RF. We must schedule operation + so

that its result can be stored in destination RF in cycle -1 and be available for reading in

cycle 0. From the list of available functional units (FUs), we first select an FU that

implements + (operation binding). Then we make sure that a path exists between selected

FU and destination RF and all elements of the path are available (not reserved by other

operations) in cycle -1 (interconnect binding). In this example we select U2 for + and bus

B3 for transferring the results to RF. Resource reservation will be finalized if the

schedule of operands also succeeds. The next step is to schedule proper MAs in order to

transfer the value of a to the left input port of U2 and value of b to the right input port of

U2. Figure 4.10 shows the status of schedule after scheduling the + operation. The figure

shows the set of MAs that are scheduled in each cycle to read or generated a value. At

this point, B1 and B2 are considered the destinations to which values of a and b must be

transferred in clock cycle -1, respectively.

clock Scheduled MAs
-1 B1=?; B2=?; B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.10. Schedule of MAs after scheduling + operation

 49

In order to read the values of a and b, we need to schedule them on their

corresponding FU (i.e. U1 multiplier) and then send the result to U2. Since there is no

path between any U1 and U2, we assume that a and b are stored in register file RF and

will try to schedule them later. Since in cycle -1, we can read from register file, then we

schedule the proper Read MAs from RF and consider a and b as internal outputs. Figure

 4.11 shows the status of schedule after scheduling Read MAs. The sub-tree of c is not

completely scheduled and the resource reservations can be finalized.

clock Scheduled MAs
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.11. Schedule of MAs after scheduling h sub-tree

The results of sub-tress of a and b must have their result ready before cycle -1.

Therefore, the corresponding MAs must be scheduled in or before clock cycle -2 and

write the result in register file RF. We start from a and schedule its sub-tree first. We

need to write the result to RF and choose an FU to perform × operation. We choose

multiplier U1 and schedule the operands from RF to U1 through busses B1 and B2.This

time, since U1 is pipelined, we schedule its output to be read in cycle -2 while its inputs

are scheduled in cycle -3. Figure 4.12 shows the schedule status after completing the

schedule of a.

clock Scheduled MAs
-3 B1=RF(x); B2=RF(y);
-2 B3=U1(B1, B2); RF(a)=B3;
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.12. Schedule of MAs after scheduling a sub-tree on pipelined multiplier

After scheduling a on U1 in cycle -2, there is no more multiplier left to schedule

operation b. Therefore, we need to decrement the clock value and try again in cycle -3. In

this cycle, multiplier U1 itself is available but both of its inputs as well as busses B1 and

 50

B2 are not available. However, we do need these resources until cycle -4. Therefore, we

can successfully schedule operation b in cycle -3. The final schedule of the complete

DFG is shown in Figure 4.13. Note that, because of pipelined FU, the result in Figure

 4.13 is one cycle shorter (faster) than that of Figure 4.8. In all of these cases, we are using

the same algorithm, i.e. walk back on DFG and schedule and bind!

clock Scheduled MAs
-4 B1=RF(z); B2=CW;
-3 B1=RF(x); B2=RF(y); B3=U1(B1, B2); RF(b)=B3;
-2 B3=U1(B1, B2); RF(a)=B3;
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2); RF(c)=B3;
0

Figure 4.13. Schedule of MAs after scheduling DFG of Figure 4.9

4.1.4 Example: heterogeneous pipelining and data forwarding
In this section we show an example to illustrate how our algorithm supports

heterogeneous pipelining and data forwarding. This is one of the unique features of our

algorithm that has no been covered by previous scheduling algorithm. Consider the

example DFG of Figure 4.14(a) to be mapped on the datapath of Figure 4.14(b). Assume

that the clock period is 20 units and delays of U1, U2, and busses are 17, 7, and 1 units,

respectively.

×

×

+

x y z 2

a b

c
a=x×y;
b=z×2;
c=a+b;

(a) DFG (b) Datapath with heterogeneous pipelining and forwarding
Figure 4.14. Compiling in presence of heterogeneous pipelining and data forwarding

 51

When scheduling an output sub-tree, first step is to know where the output is stored.

In this example, assume c is bound to register file RF. We must schedule operation + so

that its result can be stored in destination RF in cycle -1 and be available for reading in

cycle 0. From the list of available functional units (FUs), we first select an FU that

implements + (operation binding). Then we make sure that a path exists between selected

FU and destination RF and all elements of the path are available (not reserved by other

operations) in cycle -1 (interconnect binding). In this example we select U2 for + and bus

B3 for transferring the results to RF. Resource reservation will be finalized if the

schedule of operands also succeeds. The next step is to schedule proper MAs in order to

transfer the value of a to the left input port of U2 and value of b to the right input port of

U2. Figure 4.15 shows the status of schedule after scheduling the + operation. The figure

shows the set of MAs that are scheduled in each cycle to read or generate a value. At this

point, M1 and B2 are considered the destinations to which values of a and b must be

transferred in clock cycle -1, respectively.

clock Scheduled MAs
-1 M1=?; B2=?; B3=U2(M1, B2); RF(c)=B3;
0

Figure 4.15. Schedule of MAs after scheduling + operation

In order to read the values of a and b, we need to schedule them on their

corresponding FU (i.e. U1 multiplier) and then send the result to U2. We start from a and

schedule its sub-tree first. We can utilize the available forwarding path by scheduling a

on multiplier U1 and passing the results to the left port of U2 via register R1 and

multiplexer M1. Because of the register R1, the multiplication operation on U1 is actually

scheduled one cycle before operation of U2. We then continue to schedule the operands

of a and since all resources are available, we can schedule the sub-tree of a as well.

 52

Afterwards, if we try to schedule sub-tree of b, we will see that there is no path between

multiplier U1 and right port of U1. Therefore, we assume that b can be read from register

file RF in clock cycle -1 and it will be scheduled later as an internal output to write its

output to RF. Figure 4.16 shows the status of schedule at this point.

clock Scheduled MAs
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); R1=B3;
-1 M1=R1; B2=RF(b); B3=U2(M1, B2); RF(c)=B3;
0

Figure 4.16. Schedule of MAs after scheduling h sub-tree

At this point the only sub-tree left to schedule is b that must have its result ready

before cycle -1. Therefore, the corresponding MAs must be scheduled in or before clock

cycle -2 and write the result in register file RF. We first choose the proper FU (i.e. U1)

and find a path between its output and the input of RF. The only available path is the

pipelined path that goes through register R1 and bus B3. Therefore, the execution of U1 is

pushed back one more cycle from -2 to -3. Figure 4.17 shows the full schedule of DFG

after scheduling all available sub-trees.

clock Scheduled MAs
-3 B1=RF(z); B2=CW; B3=U1(B1, B2); R1=B3;
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); R1=B3; RF(c)= R1;
-1 M1=R1; B2=RF(b); B3=U2(M1, B2); RF(c)=B3;
0

Figure 4.17. Schedule of MAs after scheduling a sub-tree

Note that results of Figure 4.17 and Figure 4.7 both take 3 cycles. However, since the

datapath of Figure 4.14(b) is pipelined, it can potentially run at a faster clock frequency

than datapath of Figure 4.3(b). The same scheduling algorithm could handle the available

pipelining and forwarding although not all paths were pipelined and not all units had data

forwarding.

 53

4.1.5 Example: pipelining, forwarding, and operation chaining
Consider the example DFG of Figure 4.18(a) to be mapped on the datapath of Figure

 4.18(b). Again, assume that the clock period is 20 units and delays of U1, U2, U3,

multiplexers and busses are 17, 7, 5, 1 and 1 units, respectively. Since there are enough

busses in this datapath and also the delay of busses, multiplexers, U2, and U3 together is

less than the clock period, then we should be able to chain + and >> operations into one

cycle. This example also has heterogeneous pipelining and data forwarding. The

following shows how our algorithm supports all of these features simultaneously.

As before, we schedule the operations of basic block so that all results are available

before last cycle, i.e. 0; therefore, the MAs are scheduled in negative cycle numbers. In

each step of the algorithm, we try to schedule the sub-trees that can generate their results

before a given cycle clk. The clk starts from 0 and is decremented in each step until all

sub-trees of a basic block are scheduled.

×

×

+

>>

v x y z

a b

c

d

2

a=v×x;
b=y×z;
c=a+b;
d=c >> 2;

(a) DFG. (b) datapath with forwarding and operation chaining
Figure 4.18. Compiling in presence of forwarding and operation chaining

As before, assume d is bound to register file RF. We must schedule operation >> so

that its result can be stored in destination RF in cycle -1 and be available for reading in

cycle 0. We first select a FU that implements >> (operation binding). Then we make sure

 54

that a path exists between selected FU and destination RF and all elements of the path are

available (not reserved by other operations) in cycle -1 (interconnect binding). In this

example we select U3 for >> and bus B4 for transferring the results to RF. Resource

reservation will be finalized if the schedule of operands also succeeds. The next step is to

schedule proper MAs in order to transfer the value of c to the left input port of U3 and

constant 2 to the right input port of U3. Figure 4.19 shows the status of schedule after

scheduling the >> operation. The figure shows the set of MAs that are scheduled in each

cycle to read or generate a value. At this point, B3 and M2 are considered the destinations

to which values of 2 and c must be transferred in clock cycle -1, respectively.

clock Scheduled MAs
-1 M2=?; B3=?; B4=U3(M2, B3); RF(d)=B4;
0

Figure 4.19. Schedule of MAs after scheduling >> operation

In order to read constant 2, we need to put the value of CW register on bus B3. As

for variable c, we schedule the + operation on U2 to perform the addition and pass the

result to U3 though multiplexer M2. Note that delay of reading operands of + operation

and executing it on U2, plus the delay of reading operands of >> operation and executing

it on U3 and writing the results to RF is less than one clock cycle. Therefore, all of the

corresponding MAs are scheduled together in clock cycle -1. The algorithm chains the

operations in this way, whenever possible. The new status of scheduled MAs is shown in

Figure 4.20. In the next step, we should schedule the × operations to deliver their results

to the input ports of U2.

clock Scheduled MAs
-1 M1=?; B2==?; M2=U2(M1, B2); B3=CW; B4=U3(M2, B3); RF(d)=B4;
0

Figure 4.20. Schedule of MAs after scheduling + operation

 55

The left operand (i.e. a) of operation c can be scheduled on U1 to deliver its result

through register R1 in cycle -2 and multiplexer M1 in cycle -1. At this point, no other

multiplier is left to generate the right operand (b) and directly transfer it to the right input

port of U2. Therefore, we assume that b is stored in the register file and try to read it from

there. If the read is successful, the corresponding × operation (b) is considered as an

internal output and will be scheduled later. Figure 4.21 shows the status of schedule at

this time. The sub-tree of output c is now completely scheduled and the resource

reservations can be finalized.

clock Scheduled MAs
-2 B1=RF(v); B2=RF(x); R1=U1(B1, B2);
-1 M1=R1; B2=RF(b); M2=U2(M1, B2); B3=CW; B4=U3(M2, B3); RF(d)=B4;
0

Figure 4.21. Schedule of MAs after scheduling c sub-tree

The sub-tree of internal output b must generate its result before cycle -1 where it is

read and used by operation +. Therefore, the corresponding MAs must be scheduled in or

before clock cycle -2 and write the result in register file RF. The path from U1 to RF goes

through register R1 and hence takes more than one cycle. The second part of the path

(after R1) is scheduled in cycle -2 and the first part (before R1) as well as the execution of

operation × on U1 is scheduled in cycle -3. The complete schedule is shown in Figure

 4.22.

clock Scheduled MAs
-3 B1=RF(c); B2=RF(d); R1=U1(B1, B2);
-2 B1=RF(a); B2=RF(b); R1=U1(B1, B2); B4=R1; RF(f)=B4;
-1 M1=R1; B2=RF(f); M2=U2(M1, B2); B3=CW; B4=U3(M2, B3); RF(h)=B4;
0

Figure 4.22. Schedule of MAs after scheduling all sub-trees

 56

4.1.6 Example: Controller pipelining
As a final example, consider the CFG of Figure 4.23(a) on the datapath of Figure

 4.23 which has controller pipelining through register status. The internals of the

controller is also shown in this figure. The CFG is in fact a conditional jump. In order to

handle jump operations similar to other operations, we assume that jump writes its output

to PC register and has two inputs: (a) the target address, and (b) a condition value. If we

assume that the address generator (AG) inside the controller implements a Jump operation

then handling (conditional) jumps in presence of controller pipelining becomes very

similar to handling other operations in presence of datapath pipelining as shown bellow.

+

==

x y

L

a

PC

b

a=x+y;
b=a==10;
if (b) goto L;

Jump

10

(a) CFG (b) Datapath with controller pipelining

Figure 4.23. Compiling CFG in presence of controller pipelining

In this example, we know that the output of Jump operation is bound to PC register

inside the controller. We need now to schedule Jump operation so that its result can be

stored in destination PC in cycle -1 and be available for reading in cycle 0. We first select

a FU that implements Jump (i.e. AG). Then we make sure that a path exists between

selected FU and destination PC and all elements of the path are available in cycle -1. In

this case, the path consists of only a wire so it is always available. As before, now we

need to schedule the input operands of the Jump operation to pass their values to proper

ports of the AG, i.e. AG.offset and AG.status ports. Figure 4.24 shows the status of

 57

schedule after scheduling the jump operation. At this point, AG.offset and AG.status are

considered the destinations to which values of L and b must be transferred in clock cycle

-1, respectively.

clock Scheduled MAs
-1 AG.offset=?; AG.status=?; PC=AG(AG.offset, AG.status);
0
Figure 4.24. Schedule of MAs after scheduling jump operation

The value of L can be directly read from the CW in cycle -1. We need to schedule

the value b to be available at AG.status in cycle -1. We first find the proper FU for

executing b, i.e. U1. There is a pipelined path between U1 and AG.status which goes

through register status. Therefore the execution of b is pushed back one cycle to cycle -2.

Figure 4.25 shows the status of the schedule after scheduling the == operation. At this

point we need to schedule operation a and constant 10 to be available in cycle -2 on the

input ports of U1, i.e. bus B1 and multiplexer M1. Note that since == operation is

symmetric; the input operands can appear on either ports of U1.

clock Scheduled MAs
-2 B1=?; M1=?; status=U1(B1, M1);
-1 AG.offset=CW; AG.status= status; PC=AG(AG.offset, AG.status);
0

Figure 4.25. Schedule of MAs after scheduling == operation

Between the operands of b, we first try to schedule a since it has a deeper sub-tree.

We can select FU U2 and route the result to right input port of U1 through register R1

and multiplexer M1. Again since this path is pipelined, it will push the execution of b one

cycle back to cycle -3. We can then schedule a read from operands of a in cycle -3. Once

we have successfully scheduled a, we get back to second operand of b, i.e. constant 10.

Since bus B1 and constant filed of CW are both free in cycle -2, we can successfully

 58

schedule a read from CW via bus B1 to get the constant to the left port of U1. Figure 4.27

shows the complete schedule of the jump operation of Figure 4.23.

clock Scheduled MAs
-3 B1=RF(x); B2=RF(y); R1=U2(B1, B2);
-2 B1=CW; M1=R1; status=U1(B1, M1);
-1 AG.offset=CW; AG.status=status; PC=AG(AG.offset, AG.status);
0
Figure 4.26. Full schedule of jump in presence of controller pipelining

4.2 Cycle-accurate compilation algorithm

In this section, we describe our algorithm for compiling the application to a custom

datapath. When compiling the CDFG of each function of a program, we must consider

the structure of the controller for compiling the control-flow graph (CFG) and consider

the structure of datapath for compiling the DFG. This process is described in the next two

subsections. Description of the algorithm uses the following definitions:

• Each basic block has a schedule status ss, where ss.MAs(clk) stores the set of scheduled

MAs in clock cycle clk, and ss.resTable(clk) stores the reservation status of resources in

clock cycle clk, and ss.length shows the number of scheduled states for that block.

• For an operation op, op.result is the value generated by op and op.operands is the list of

results of predecessors of op.

• For a functional unit FU, FU.output is the output port of FU and FU.inputs is the set of

input ports of FU. A functional unit may implement multiple operations. For each

operation, FU.timing represents the delay of the unit (or its stages if it is pipelined) as well

as the duration of applying the control signals to the unit.

• A path p is the list of resources that can transfer a value from one point to another. These

resources include busses, multiplexers and registers. The timing of resources of p is stored

 59

in p.timings and is calculated based on delay of buses or multiplexers, or setup time and

read delay of registers or register-files.

• A destination dst is a storage or an input port of a functional unit.

4.2.1 Mapping the CFG of the program
The result of NISC compiler is an FSM that can be implemented in logic or using a

memory. In a memory-based implementation the state register is a program counter

register (PC). Therefore, a state change in the FSM corresponds to incrementing the PC

or loading it with a new value using a jump operation. While incrementing PC always

takes one cycle, loading it with a new value may take more than one cycle. The result of

scheduling a basic block is always a sequence of states (marked by value of clk). We may

only need a jump at the end of a basic block, if the last state of the block is not before the

first state of the next basic block. In the algorithm, we assume that the order of basic

blocks is given, and that there may be jump operation at the end of some basic blocks.

Since we perform the scheduling backward, the result will be a set of states

numbered from –N to +bd. The return address of a function is loaded into PC at state 0.

Constant bd is the branch delay of the architecture, i.e. in a basic block, after loading the

target address of a jump operation into PC, bd–number of control words will be executed

from that basic block. Value of bd depends on the distance between PC and control word

register, which is fixed and unique. Usually, this delay is 0 or 1 cycle in NISC.

In procedure ScheduleFunction (Figure 4.27), the blkList contains the topologically

ordered list of basic blocks where the last element of the list is the return block. The

blocks of blkList are processed in reverse order, starting from return block and after

scheduling each block, the results are added to the fsm. In the main loop of

 60

ScheduleFunction (lines 3-8), before scheduling the body of a basic block, the jump

operation at the end of block is scheduled. The same way that a + operation is mapped to

an adder or ALU and writes its results to a register or register file, the jump is considered

an operation that is mapped to address generator and writes its result to the PC register in

cycle clk. In this way, we can schedule jump the same way that we schedule other

operations (line 5). In order to make sure that the branch delay of the jump operation is

filled by other operations in the basic block, we try to schedule the DFG of the basic

block from cycle clk+bd (line 6). After scheduling each basic block, the new value of clk

is calculated by decrementing the number of states in the block (line 7). The

ScheduleBasicBlock and ScheduleOpertion functions are described in Section 4.2.2. After

scheduling all functions of a program, fsm will contain the final FSM of the design.

00
01
02
03
04
05
06
07
08

ScheduleFunction(FSM fsm, ordered list of basic blocks blkList)
 clk = 0;
 bd = branch delay;
 foreach (blk ∈ reverse of blkList)
 if (blk has a jump operation)
 ScheduleOperation(blk.jump, clk, blk.ss, PC);
 ScheduleBasicBlock(blk, clk+bd);
 add blk.ss states to fsm;
 clk = clk – blk.ss.length;

Figure 4.27. Pseudo code of ScheduleFunction

4.2.2 Mapping the DFG of the program
The variable, operation, and interconnect bindings are performed during the schedule

of each operation. We also allow pre-binding of variables and operations so that the

designer or other algorithms can control the results (Chapter Chapter 5). For example, a

partitioning algorithm may partition the variables and pre-bind them to two memory

units.

 61

Figure 4.28 shows the ScheduleBasicBlock procedure that performs the scheduling

and binding for each basic block of a CDFG. In the main loop of this function (lines 3-

16), the available output operations, i.e. sub-tree roots that can generate their results at

clock cycle clk, are collected and sorted based on a priority function, such as operation

mobility. During scheduling of each of these output operations, some internal outputs

may be generated. If the schedule of the operation is successful, then the operation is

removed from the set of sub-tree roots (Roots) and the newly generated internal outputs

are added to the list in order to be processed later (lines 14-15). In each iteration of the

loop, the clk is decremented and available output operations are collected and scheduled

until all sub-trees in the block are processed.

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

ScheduleBasicBlock(block blk, clock lastClock)
 Roots = {output operations in blk.DAG};
 clk = lastClock;
 while(Roots ≠ ∅)
 AvailableOutputs = ∅;
 foreach (operation op ∈ Root)
 if (all successor of op are scheduled after clock clk)
 AvailableOutputs = AvailableOutputs + {op};
 Sort AvailableOutputs by OperationPriorities;
 foreach (operation op ∈ AvailableOutputs)
 internalOutputs=∅;
 if (op.result is not pre-bound to a storage)
 bind op.result
 destination dst = storage of op.result
 if (ScheduleOperation(op, clock ,blk.ss, dst))
 Roots = Roots – {op} + internalOutputs;
 clk=clk-1;

Figure 4.28. The ScheduleBasicBlock procedure

The ScheduleOperation function (Figure 4.29) tries to schedule an operation op so

that its result is available at dst at clock cycle clk. If op is not pre-bound to a specific

functional unit, then the list of functional units that can execute op is stored in F and

sorted by the UnitPriorities (lines 1-4). This priority function depends on the delay of the

unit as well as the paths from output of the unit to the destination dst. After selecting a

 62

functional unit FU, all paths from FU to dst are stored in P and sorted by a PathPriority.

The timings of FU and a selected path p are calculated so that the output of FU is

available at dst at clock cycle clk (lines 7-12). If FU and all of the resources on the path p

are not reserved in the ss.resTable at the corresponding calculated times, then algorithm

tries to schedule the operands of op by calling the ScheduleOperands function. If the

schedule of operands succeeds, then selected functional unit FU and path p are reserved

(operation and interconnect binding) (lines 15-19). We pass a copy of scheduling status

(copyStatus) to function ScheduleOperands to make sure that original status changes only

if all operands are successfully scheduled. If scheduling failed after trying all functional

units, the ScheduleOperation function tries to bind the result of operation to a storage and

schedule a read from that storage. If the read succeeds, the operation is added to the

internalOutputs for later processing.

The ScheduleOperands function (Figure 4.30) schedules the operands of an

operation op on a selected functional unit FU so that their values are available on

corresponding input ports of FU at clock cycle clk. If an operand is a variable or a

constant, then this function tries to schedule a read from the corresponding storage.

Otherwise, it calls the ScheduleOperation function. The function succeeds only if all

operands can be scheduled.

In the ScheduleRead function (Figure 4.31), the best available path that can transfer a

value from its storage to the specified destination at clock cycle clk is selected and

scheduled.

 63

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

bool ScheduleOperation(operation op, clock clk, schedule status ss, destination dst)
 if (op is pre-bound to a functional unit)
 F = {functional unit to which op is pre-bound};
 else
 F = {functional units that implement op sorted by UnitPriorities};
 foreach(FU ∈ F)
 P = {paths from FU.output to dst sorted by PathPriorities};
 foreach(p ∈ P)
 p.timings.end = clock;
 calculate p.timings.start;
 if (resources of p are not reserved in ss.resTable)
 FU.timing.end = p.timings.start;
 calculate FU.timing.start;
 if (FU is not reserved in ss.resTable)
 copyStatus = ss;
 if (ScheduleOperands(op, FU.timing.start, copyStatus, FU))
 ss = copyStatus;
 reserve FU and p in ss.resTable;
 add corresponding MAs to ss.MAs;
 return TRUE;
 bind op.result;
 if (ScheduleRead(op.result, clk, ss, dst))
 internalOutputs = internalOutputs + {op};
 return TRUE;
 return FALSE;

Figure 4.29. The ScheduleOperation function
00
01
02
03
04
05
06
07
08
09
10
11

bool ScheduleOperands(operation op, clock clk, schedule status ss, functional unit FU)
 foreach(operand o ∈ op.operands)
 destination dst = FU.inputs corresponding to o;
 if (o is a variable or a constant)
 if (o is not pre-bound to a storage)
 bind o to a storage;
 if (! ScheduleRead(o, clk, ss, dst))
 return FALSE;
 else if (! ScheduleOperation(o, clk, ss, dst))
 return FALSE;
 return TRUE;

Figure 4.30. The ScheduleOperands function
00
01
02
03
04
05
06
07
08
09

bool ScheduleRead(value v, clock clk, schedule status ss, destination dst)
 P = {paths from storage of v to dst sorted by PathPriorities};
 foreach(p ∈ P)
 p.timings.end = clk;
 calculate p.timings.start;
 if (resources of p not reserved in ss.resTable)
 reserve p in ss.resTable;
 add corresponding MAs to ss.MAs
 return TRUE;
 return FALSE;

Figure 4.31. The ScheduleRead function

 64

4.3 Other scheduling algorithms

Because the architecture style of NISC is new, little research has been done on the

mapping algorithms for NISC. However, some of techniques developed in the areas of

ASIPs, high level synthesis, and retargetable compilers can be directly or indirectly

related to NISC. There has been an extensive body of work on scheduling and binding

algorithms in the area of high level synthesis and retargetable compilers, which we

review in this section.

Force directed scheduling (FDS) [49] [50] is commonly used to solve the timed

constrained scheduling problem. This algorithm, distributes the execution of similar

operations in different clock cycles in order to achieve high utilization of functional units

while meeting the time deadline. Path-based scheduling algorithm [55] tries to minimize

the number of clock cycles needed to execute the critical paths that exist in the given

CDFG. To do so, the algorithm gives emphasis to conditional branching i.e. it starts by

extracting all possible execution paths from the given CDFG and schedules them

independently. Then the schedules of different paths are combined to generate the final

schedule for the whole design. However, the path-based approach restricts the execution

order of the operations before scheduling.

List-based scheduling techniques [19] are used to solve resource constrained

scheduling problem in which the number of resources of different types are limited. List

scheduling processes each state sequentially. At each state, it tries to choose the best

operation from the list of candidate operations, subject to resource constraints. List

scheduling uses a ready-list, which keeps all nodes that their predecessors are already

scheduled. The ready-list is always sorted with respect to a priority function. The priority

 65

function always resolves the resource contention among operations, i.e. operations with

lower priority will be deferred to the next or later states. The quality of the results

produced by a list-based scheduler depends predominantly on its priority function.

Mobility of the operation, i.e. the difference between ASAP (as soon as possible) and

ALAP (as late as possible) times, is commonly used as the priority function in many HLS

systems. Different priority functions and heuristics have been proposed to improve the

quality of list scheduling. The proposed list scheduling algorithms in [65] and [9] uses

mobility as the primary priority functions. To break the tie among a set of available

operations with similar mobility, they assign higher priority to those operations that

contribute to the same output. Before scheduling begins, they analyze the outputs of

operations in the DFG by constructing a set of trees (cones) that start from output nodes

as roots. However, they use a conventional scheduler that starts from inputs and proceeds

forward, and the output trees are only used to break the tie during schedule. A similar

approach is used in [21] and [31] for scheduling on VLIW architectures. Output trees in

DFG are also used for instruction selection using the maximal-munch algorithm.

Processing the DFG backward, from outputs towards inputs, has proven to be very

fruitful. However, this idea has been mainly used in priority functions but not the

scheduling algorithm itself.

All of these scheduling algorithms only schedule operations and assume that binding

is done later. While theoretically it is possible to support multi-cycle and pipelined

operations in HLS scheduling algorithms, none can consider operation chaining as

accurate as our algorithm because the information of wire between functional units will

not available in traditional HLS until after resource and variable binding. Lack of access

 66

to wire information also prevents traditional HLS from supporting pipelining and data

forwarding. Also, all HLS approaches generate normal FSMs and do not support

pipelined controller the way our algorithm does.

On the other hand, VLIW and other similar compilation algorithms do not support

partial forwarding and pipelining. Only one scheduling approach [8] has considered

partial data forwarding. However, this approach can only handle direct forwarding paths,

while ours can support pipelined paths as well. Also, their approach requires the behavior

of every instruction to be defined in terms of all possible forwarding paths, while in our

approach; we only describe the structure of architecture and then extract and analyze the

possibilities during scheduling. Finally, supporting multi-cycle, pipelined, or chained

operations is outside of the scope of standard compilation algorithms because they do not

consider the low-level structural details of the architecture.

 67

Chapter 5. Low-level
programming in NISC using C

Languages such as C are generic enough to cover majority of the application needs,

but sometimes in applications, the underlying hardware must be controlled directly

through special registers or instructions. In instruction-based processors, programmers

use assembly code to perform tasks such as peripheral IO operations, configuring the

interrupt unit, or use resources with custom functionalities that cannot be expressed in C.

Since in NISC, the architecture has no predefined instruction-set, it does not have any

assembly code either. This is specially limiting when an application requires interrupt or

needs to communicate with other cores in a system. In statically-scheduled architectures,

use of microcode for low-level programming requires that the programmer also provide

an accurate cycle-by-cycle schedule of the microcodes. This makes direct use of

microcodes (a) tedious and error prone, and (b) impractical in C language. This issue has

not been addressed in the past and all architectures that use microcode for programming

assume that if low-level programming is needed, it will be done manually. Approached

such as TIPI do not even have a compiler and assume all programming is done manually.

 68

5.1 Motivating example

Consider Figure 5.1 that shows a sample code for finding the maximum of four

numbers as well as the corresponding CDFG when compiled on the shown datapath. It is

clear from the program and the CDFG that: (1) there are too many states in the CDFG

and therefore the code will take several clock cycles to run on the datapath, and (2) the

code does not have any parallelism that can be utilized for speeding up the computation.

Figure 5.1. Normal code for finding maximum of four numbers

If we look at the code for finding maximum of four numbers in Figure 5.1 we can

see that there are three similar conditional clauses that find the maximum of two

numbers. We can execute this code much more efficiently if we construct a datapath that

has a custom functional unit (called Max) for finding maximum of two numbers, as

shown in Figure 5.2.

Using the Max FU, we can find the maximum of four numbers in just two clock

cycles as shown in Figure 5.3. But the question is what should we write in the C code for

 69

the NISC compiler to generate such a schedule? Since NISC does not have any

predefined instruction-set, it also does not have any assembly. Therefore, we can not use

the assembly to directly program and use the underlying Max FU in the datapath of

Figure 5.2. Furthermore, any mechanism that provides low-level access in C, should also

enable the NISC compiler to freely schedule the custom functions along with other

operations if possible.

LR

status
address

CW

offset RF

Max Max

Mux2

>

Max

U2U1

Figure 5.2. Datapath with custom function unit for finding maximum of two numbers
Clock MAs
0 RF(x)=Max(R(a), RF(b)); RF(y)=Max(RF(c), RF(d));
1 RF(z)=Max(RF(x), RF(y));

Figure 5.3. Finding maximum of four numbers using a custom FU in Figure 5.2

5.2 Providing low-level programming in NISC

To support low-level programming in NISC, we introduce the concept of pre-bound

functions and variables in the NISC compiler. These functions and variables have

common C syntax but instead of implementing them in the normal way, the compiler

maps them to specific hardware resources. During code generation, the compiler

generates proper control bits to access their corresponding hardware resources.

To better understand the difference between pre-bound functions and normal

functions, let’s first see how a normal function is executed. Figure 5.4(a) shows the C

code of a function f() that calls another function Max(). During call, two parameters

 70

are passed to Max and then one result is returned. Figure 5.4(b) shows the corresponding

CDFG of this code, while Figure 5.4(c) shows its stack behavior. As the CDFG shows, in

the caller function, first the stack must be extended for the return value and the

parameters, then the parameters are pushed on the stack, and finally the execution flow

jumps to the beginning of the callee, i.e. Mux_prolog block. In the prolog of the callee,

the return address and the FP register values are pushed on the stack and the stack is

extended by incrementing the value of SP. After executing the body of the function and

writing the return value, the SP and FP register values are restored and the execution flow

jumps back to the caller. This example shows how normal function calls are

implemented. It also shows the relatively high overhead of functions calls.

A pre-bound function is directly mapped to a hardware resource and is treated the

same as other operations. Therefore, if we assume that the Max function in Figure 5.4(a)

is a pre-bound function, then we do not need to specify the body of this function and the

CDFG of the program becomes a lot simpler as shown in Figure 5.5(b). In this case, the

Max “operation” is treated exactly the same way that the ADD or MUL operations are

handled. In this way, we can not only directly use a component in the datapath, but also

will have a more efficient execution since the CDFG is simpler and the Max operation

can be scheduled in parallel with the rest.

Figure 5.6 shows the C code and the corresponding CDFG for finding the maximum

of four numbers using the Max pre-bound function. Compiling this code on the

architecture of Figure 5.2 will automatically result in the schedule of Figure 5.3.

 71

Figure 5.4. Execution of normal function calls

Figure 5.5. Executing a pre-bound function

Figure 5.6. Finding maximum of four numbers using Max pre-bound function

 72

Note that pre-bound functions are different from intrinsic functions, commonly used

in the compilers. Pre-bound functions affect the functionality of the application but have

no implementation and are treated similar to other operations. Therefore, they can be

scheduled in parallel with other operations and with each other. On the other hand, the

intrinsic functions are implemented in the same way as other normal functions, i.e.

inlined or jumped to. But since the compiler has a built-in knowledge of how the intrinsic

functions behave, it can optimize them more than normal code. Also, some intrinsic

functions only provide hints to the compiler (e.g. for optimizations) but have no

implementation or have no effect on the program.

5.3 Pre-bound functions in GNR and C

As we mentioned in Section Chapter 3, the NISC architecture is described in GNR

format. In the model of the architecture, we describe pre-bound functions for functional

units the same way that their operations are defined. The description also maps the

function output and parameters to the ports of the component and specifies the timing and

corresponding control bit values. We also specify whether the scheduler can freely move

the function and schedule it with other operations, or it should preserve the order of the

function with respect to operations that appear before and after it in the code. For

example, the Max pre-bound function, discussed in Section 5.2, can be freely moved and

scheduled with other operations in the program because it does not store any internal state

or change the state of the architecture. As another example, assume we have a Push and a

Pop pre-bound function that are mapped to a hardware queue. The hardware

implementation of these functions changes the state of the architecture, i.e. add a value in

 73

the queue or remove one from it. Therefore, the execution order of these functions in the

code must be preserved by the compiler otherwise the result would be wrong.

To support pre-bound functions and variables, we added a new tool,

PreboundCGenerator, to the flow of Figure 2.4. The new flow is shown in Figure 5.7.

Before compiling the application on the given datapath, the PreboundCGenerator tool

processes the architecture description and generates a C header (.h) and source (.c) file

that contains the declarations of the pre-bound variables and functions. For every register

in the datapath (including registers in the register-file) a variable is declared in the

generated source file, the function descriptions of the functional units are also translated

to proper C function declarations. The tool also provides this information to the NISC

compiler so that it knows which functions and variables are pre-bound to what hardware

components. The generated source files are included in the application and the

programmer can use them the same way they are normally used in C. During

compilation, instead of binding variables to global memory, or stack, they are bound to

their corresponding registers. Similarly, instead of implementing calls to pre-bound

functions with jump operations, these calls are treated the same way that for example an

add or multiply operation is treated.

Figure 5.7. NISC tool flow with pre-binding

Figure 5.8 shows the GNR of the Max unit shown in Figure 5.2. This description

defines Max as a hierarchical module and assigns compiler aspect to it. As we explained

 74

in Section 3.3, when the compiler loads this component, it uses the information in the

compiler aspect and will not process the internal netlist of the module. The internal netlist

specifies the actual implementation of this unit based on the GNR description of other

components in the library. This information is used by the RTL generator tool. Instead of

the netlist, we could have a Verilog aspect that directly describes the implementation of

the component in Verilog HDL. In the compiler aspect of this component, a Function

(rather than an Operation) is defined that maps the function name Max to the input and

output ports of the module. The description also specifies that this function has no state

dependency and hence the compiler can safely move it and schedule it in parallel with the

rest of the code.

After running the PreboundCGenerator (Figure 5.7) on the GNR of the description

of Figure 5.2, it will generate the proper .h and .c files that can be include in the

application project for using the pre-bound functions. Figure 5.9(a) shows the header file

(.h) that includes the declaration of the Max pre-bound function. Note that in this file, in

addition to the Max function, there are two other function declarations that are the same

as Max but include the instance name of the unit in the datapath. These functions are

bound to specific instance of the unit. If the Max function is used in the program, then the

compiler can choose either U1 or U2 units for scheduling the Max pre-bound function.

Otherwise, if any of the __$U1_Max or __$U2_Max functions are used then the

compiler will schedule the function on the corresponding component instance. Figure

 5.9(b) shows the source file (.c) that includes the definition of the pre-bound functions.

These function definitions are only used to allow the standard C front end of the NISC

compiler correctly compile the whole program. However, the bodies of these functions

 75

are not used by the NISC compiler and will be ignored. The PreboundCGenerator can

also choose to generate a valid body for the pre-bound functions that describe their actual

behavior and can be used for debugging or simulation of the C code.

<Module type="Max">
 <Ports>
 <InPort n="i0" bitWidth="32" />
 <InPort n="i1" bitWidth="32" />
 <OutPort n="o" bitWidth="32" />
 </Ports>
 <Netlist>
 <Components>
 <Instance n="c" type="GreaterThan" lib="Lib" />
 <Instance n="m" type="Mux2" lib="Lib" />
 </Components>
 <Connections>
 <Conn src="" srcPort="i0" dest="c" destPort="i0" />
 <Conn src="" srcPort="i1" dest="c" destPort="i1" />
 <Conn src="c" srcPort="o" dest="m" destPort="sel" />
 <Conn src="" srcPort="i0" dest="m" destPort="i0" />
 <Conn src="" srcPort="i1" dest="m" destPort="i1" />
 </Connections>
 </Netlist>
 <Annot_compiler>
 <Functions>
 <Function n="Max" stateDependency="none" delay="0">
 <Output port="o"><Type n="int" /></Output>
 <Input port="i0"><Type n="int" /></Input>
 <Input port="i1"><Type n="int" /></Input>
 </Function>
 </Functions>
 </Annot_compiler>
</Module>

Figure 5.8. GNR of description of Max unit shown in Figure 5.2
void Max(int, int);
void __$U1_Max(int, int);
void __$U2_Max(int, int);

void Max(int i0, int i1) {return 0;}
void __$U1_Max(int i0, int i1) {return 0;}
void __$U2_Max(int i0, int i1) {return 0;}

(a) .h file (b) .c file
Figure 5.9. Generated pre-bound C codes

5.4 Benefits of pre-bound functions and variable

While providing similar capabilities, our pre-binding approach is more flexible than

using assembly in instruction based processors. The pre-bound constructs have C syntax

and can be merged with the rest of the application much easier than assembly code. Also,

the programmer does not need to worry about the scheduling of these constructs.

 76

ASIP approaches such as LISA [48] capture the description of custom instructions in

ADL and then generate assembler. Therefore, to access low level resources the program

should use assembly of custom instructions. In Tensilica [70], the base processor is

extended by adding custom instructions. Each custom instruction is defined in their TIE

proprietary language and must be explicitly used in the C code via special function calls.

This idea is similar to our pre-bound functions. However, in contrast to our approach,

Tensilica’s custom instructions (and their corresponding functions) have only one

possible implementation. They cannot represent several similar resources, or be

scheduled (and potentially moved) the way pre-bound functions are handled in NISC

compiler.

All other statically-scheduled architectures (i.e. microcoded or VLIW) require the

programmer to explicitly provide the schedule of the microcode or assembly. In NISC,

the compiler schedules the calls to pre-bound functions and accesses to pre-bound

variables. Therefore the programmer uses these functions and variables exactly the same

way that normal C functions and variables are used.

In NISC, the main goal is to develop the application in an architecture independent

high-level language (e.g. C) so that it can be mapped on different custom architectures.

Another benefit of our pre-binding approach is that a C code using pre-bound functions

or variables can execute on any architecture as long as that architecture contains the

corresponding hardware resources. In this way, the backward compatibility can be

maintained at source code level without imposing as tight constraints as backward binary

compatibility requires.

 77

Chapter 6. Interrupt
handing

In traditional microcoded processors, the microcode or nanocode was used inside the

processor to implement the instructions of the instruction-set. In other words, the

instructions, rather than the microcode, would define the processor’s external behavior

seen by the programs. The instruction abstraction (a) enables backward binary

compatibility, (b) simplifies low-level programming through assembly, and (c) defines

fine-grained intervals where interrupts could be handled by the processor. In contrast, in

NISC nanocode and in MIMOLA [63], TIPI [68], PICO [36] [61], and ARM OptimoDE

 [45], [35] microcode is used instead of instructions to execute the program. In these

techniques all of the aforementioned benefits of instruction abstraction are lost. In

embedded and custom processors, backward binary compatibility is not as important as it

is in the general-purpose processors. However, interrupt and assembly programming are

necessary features. For example, developing different communication protocols rely on

interrupts and low-level access to the hardware.

All approaches that use nanocode or microcode for programming are statically-

scheduled architecture. In statically-scheduled pipelined architectures, different stages of

 78

execution of an operation (e.g. read, execute, write-back) are implemented with several

micro-operations. The overlapping execution stages of different operations are combined

in micro-instructions which determine the control-word (CW) for each clock cycle. As a

result, execution of micro-instructions cannot be arbitrarily interrupted; otherwise, the

interrupt routine may need to store/restore datapath registers in addition to the registers of

the register-file. A safe and efficient interrupt mechanism is needed in statically-

scheduled pipelined architectures before they can be used in embedded systems. PICO

and OptimoDE are designed as co-processors only and hence interrupts are assumed to be

processed by the main processor. MIMOLA and TIPI have not considered interrupt

problem at all.

Figure 6.1. (a) Sample datapath, (b) sample code

6.1 Challenge of interrupt support in NISC

While other microcode based approached focus only on single-cycle operations, in

NISC operation chaining (sub-cycle operations) and multi-cycle operations are also

supported. Consider the datapath of Figure 6.1(a) that is used to compile the set of

expressions shown in Figure 6.1 (b). Depending on the clock frequency of the system and

the delay of the components, the NISC cycle-accurate compiler can choose to chain two

operations in one cycle or execute one operation over multiple cycles. Assume that clock

period of the system is T, delay of ALU1 is d1, and delay of ALU2 is d2. Also assume that

 79

ALU2 is slower but consumes less power (d1 < d2). Depending on the values of T, d1,

and d2 three cases are possible:

• If d1 < T and d2 < T but T < d1+d2, then each operation must be scheduled in one cycle and

intermediate data must be stored in the register-file or datapath register r (Figure 6.2(a)).

• If d1+d2 ≤ T, then two operations can be chained in one cycle and register-file is accessed

only once for writing back the final results (Figure 6.2(b)).

• If d1 < T < d2, then the faster ALU1 can be used to execute two operations in two

consecutive cycles while the slower ALU2 executes the other operation in two cycles

(Figure 6.2(c)).

Figure 6.2. (a) single-cycle, (b) chained, (c) multi-cycle operations

As this example illustrates, in NISC the datapath can be utilized very efficiently

because the compiler has complete control over it. While instruction-set based compilers

are mainly concerned with performance, the NISC compiler can also consider other

design parameters such as timing and power consumption of individual datapath

components. However, as mentioned before, this architectural style introduces new

challenges for supporting interrupts.

6.2 Adding interrupt handling to NISC

In traditional processors, the interrupt is checked between every two instructions.

The execution flow can be interrupted between instructions because all instructions store

 80

their result back to the register-file. Therefore, the interrupt routine may only need to

store/restore the value of registers in the register-file in its prolog/epilog.

In NISC, the intermediate results of operation may be stored in the internal registers

of the datapath. Furthermore, an operation may take more than one cycle (e.g. (Figure

 6.2(c)) and hence span across multiple CWs. Therefore, in NISC the execution flow

cannot be interrupted between any two arbitrary CWs. Detecting the dependencies

between CWs at run time is very difficult (if not impossible). Also, in addition to the

registers of the register-file, an interrupt routine may need to store/restore the

intermediate registers of the datapath as well.

To address this problem, we need to find an easily identifiable location in the

program where execution flow can be safely interrupted. The boundary of basic blocks is

a good candidate for this purpose. A basic block is a sequence of operations that always

execute together. The execution sequence of basic blocks of the program is data or

control flow dependent. Consequently, every basic block must read its inputs from

memory or register-file and must write its outputs back to memory or register-file. In

other words, since execution of operations of a basic block cannot depend on the

intermediate datapath values of other basic blocks, the interrupt can be safely serviced at

the end of basic blocks. In fact, one of the goals of NISC is to execute each basic block as

if it was executed with one custom instruction. Based on this observation, the controller

of NISC checks for interrupts only when bits corresponding to jump operations are set,

i.e. at the end of basic blocks. After a jump operation, the execution flow goes to the

target of the jump or an interrupt routine. In presence of an interrupt, the target of the

original jump is passed to the interrupt routine as its return address. Note that this scheme

 81

also simplifies the implementation of atomic functionalities because the programmer can

now count on atomic execution of basic blocks.

Figure 6.3. Updated controller for supporting interrupt

Figure 6.3 shows the updated controller of Figure 2.2 for supporting interrupt. In this

new controller, an interrupt bit indicates whether there is a pending interrupt. The AND

gate in the AddressGenerator causes the execution flow to jump to the interrupt service

routine (ISR) only if (a) there is a pending interrupt, (b) end of basic block has reached,

i.e. a jump operation is being executed, and (c) the jump is not because a call operation.

To better understand how the interrupts are handled in NISC, we first need to

understand how a function call is executed. Figure 6.4 shows the CDFG and execution

 82

flow when a function is called. In the caller, first the parameters of the callee function are

pushed on the stack and then execution flow jumps to the beginning of the callee function

(e.g. basic block BB0 in Figure 6.4). A call operation is the same as a jump, but it also

loads the next PC value in the LR register before jumping to the target address. In this

way the LR register holds the return address immediately after a call operation. Every

function has at least three basic blocks: (i) a prolog block that saves the return address

(i.e. the LR register value) on the stack as well as the value of registers that will change in

the function, (ii) a block as the starting point of the main body of the function, and (iii) an

epilog block that restores the value of modified registers and jumps back to the return

address. After the call, the caller function (basic block BB1) pops back the parameters

and return value from the stack before it continues its execution.

BB0:
...
//push params
CALL(f1);

BB1:
//pop params
...

f1_prolog:
PUSH(LR);
//push regs;

f1_body:
...

f1_epilog:
//pop regs;
t1=POP(LR);
JUMP(t1);

PC=f1_prolog;
LR=BB1;

PC=BB1;
Figure 6.4. CDFG of a typical function call

The interrupt is very similar to a function call, but rather than using a call operation

in the program, the jump to the ISR is initiated in the controller when the interrupt signal

becomes ‘1’. Figure 6.5 shows how ISR is executed at the end of a basic block when

interrupt signal is enabled. The ISR has no parameters and does not return any value,

therefore, there is no need to parameter push/pop in the main execution flow. The

modified controller structure in Figure 6.3 also guarantees that the target of the jump

 83

address is stored in the LR before going to ISR. After ISR is finished, it returns to the

block where the original jump was supposed to go to.

Figure 6.5. Interrupt exaction after a jump operation

BB0:
...
//push params
CALL(f1);

BB1:
//pop params
...

f1_prolog:
PUSH(LR);
//push regs;

f1_body:
...

f1_epilog:
//pop regs;
t1=POP(LR);
JUMP(t1);

PC=f1_prolog;
LR=BB1;

PC=BB1;

ISR_prolog:
PUSH(LR);
//push regs;

ISR_body:
...

ISR_epilog:
//pop regs;
t1=POP(LR);
JUMP(t1);

PC=ISR_prolog;
LR=f1_body;

PC=f1_body;

interrupt

Figure 6.6. Interrupt execution after a call operation

Since both interrupt service routine and the normal function call depend on the value

LR register, we should make sure that these two mechanisms do not interfere with each

other. To simplify the implementation, if interrupt is enabled right before a function call,

we first execute the call and then process interrupt. In this way, the prolog of the function

stores its return address and will no longer need the value of LR. Then the interrupt

mechanism in the controller can safely overwrite the value of LR. After interrupt handler

is finished, the execution flow returns back to the called function. This mechanism is

 84

illustrated in Figure 6.6. This simplification minimizes the required changes to the

controller for implementing interrupts. Additionally it enables (a) use of normal function

calls in the ISR, and (b) support of nested interrupts.

Usually a processing element must support multiple interrupts. The interrupt signals

are not synchronized with the clock and may come at any time. Furthermore, an interrupt

signal may be deactivated before it is processed. Therefore, we need a hardware

mechanism to catch all interrupts when they come and also can handle multiple

interrupts. One option is to add such mechanism to the controller; but this jeopardizes the

NISC philosophy. In NISC we want to be able to customize and remove as much unused

resources as possible. Since the designer can freely customize the datapath, we put the

interrupt catch mechanism in an interrupt unit (IU) in the datapath and connect it to the

interrupt port of the controller. If no interrupt support is needed in the design, the IU is

removed from datapath and the interrupt port of controller is connected to “0”

(grounded). When we connect the interrupt port to “0”, the AND gate and the

multiplexers who are controlled with this AND gate will be removed during logic

optimization. In this way, the controller of Figure 6.3 becomes exactly the same as the

original controller of Figure 2.2. With this approach, the interrupt handling hardware is

added to the design only if the interrupt support is required. In the next section, the details

of the IU and its usage are explained.

6.3 The interrupt unit (IU)

Figure 6.7 shows the internal implementation of Interrupt Unit (IU). Each interrupt

connected to the asynchronous-set port of a flip-flop which latches that interrupt. The

flip-flop also has a synchronous-reset that allows the programmer to clear the flip-flop by

 85

provide an interrupt number on the port i and setting the clearInterrupt control port.

There is also a mask register that has one bit for every interrupt and if the bit is 0 then the

corresponding interrupt is disabled. Therefore, writing an integer 0 in the mask disables

all interrupts. A priority encoder determines the interrupt number of the highest priority

activated interrupt. Finally, an OR gate generates a notification signal for the controller

indicating that at least one interrupt is available for processing. The input (i) and output

(o) ports of the UI are connected to the datapath.

sR aS
FF

decoder

reset
clearInterrupt

o

loadM ask

i

interrupt2Contro ller

Interrupt[0]

m ask

sR aS
FF

In terrupt[2 n-1]

encoder

Figure 6.7. The structure of Interrupt Unit

Figure 6.8 shows the GNR code of the IU that has thee pre-bound functions, i.e.

setMask, clearInterrupt, and interruptNumber. The component has a set of input, output

and control ports. Function descriptions specify the mapping between their inputs/output

and the input/output ports of the component. The description also determines the control

values that must be assigned to corresponding control ports for execution of the function.

The functions in this example indicate stateDependency=”all”. This means that the

 86

compiler must preserve the order of operations before and after these functions during

scheduling. These pre-bound functions provide all the means for directly controlling the

IU from C code.

<FU type="InterruptUnit">
 <Params>
 <Param n="BIT_WIDTH" />
 <Param n="INTERRUPT_COUNT" />
 <Param n="DELAY" val="0"/>
 </Params>
 <Ports>
 <Clock n="clk" bitWidth="1" />
 <InPort n="reset" bitWidth="1" />
 <CtrlPort n="clearInterrupt" default="0" bitWidth="1" />
 <CtrlPort n="loadMask" default="0" bitWidth="1" />
 <OutPort n="interrupt2C_ntroller" bitWidth="1" />
 <InPort n="interrupts" bitWidth="{@INTERRUPT_COUNT}" />
 <InPort n="i" bitWidth="{@BIT_WIDTH}" />
 <OutPort n="o" bitWidth="{@BIT_WIDTH}" />
 </Ports>
 <Annot_verilog><!--determines the implementation info. --></Annot_verilog>
 <Annot_compiler>
 <Functions>
 <Function n="setMask" delay="{@DELAY}" stateDependency="all">
 <Input port="i"><Type n="unsigned char" /></Input>
 <Ctrl port="loadMask" val="1" />
 </Function>
 <Function n="clearInterrupt" delay="{@DELAY}" stateDependency="all">
 <Input port="i"><Type n="unsigned char" /></Input>
 <Ctrl port="clearInterrupt" val="1" />
 </Function>
 <Function n="interruptNumber" delay="{@DELAY}" stateDependency="all">
 <Output port="o"><Type n="unsigned char" /></Output>
 </Function>
 </Functions>
 </Annot_compiler>
</FU>

Figure 6.8. The GNR code for an Interrupt Unit (IU)

As we explained in Section 5.3, the PreboundCGenerator tool generates a head code

that includes the declaration of the pre-bound functions in the GNR. Since the pre-bound

functions of the IU all have state dependency, they can be used only for specific

component instance. In NISC, we define a main interrupt handler routine that is called for

all interrupts. The typical C code of this function is shown in Figure 6.9. in the

interruptHandlerMain function, the pre-bound functions are used to control the IU. In this

 87

function first the current interrupt number is read, and then all interrupts are disabled by

setting the mask to 0. After handling an interrupt, its corresponding latch in the IU is

cleared and all interrupts are enabled again by setting all bits of the mask register to 1.

void interruptHandlerMain()
{
 int iNum = __$IU_interruptNumber();
 __$IU_setMask(0);
 //handling the interrupt
 switch(iNum) {
 case 0: /*handling interrupt 0*/ break;
 case 1: /*handling interrupt 1*/ break;
 ...
 }
 __$IU_clearInterrupt(iNum);
 __$IU_setMask(-1);
}

Figure 6.9. Sample C code for using pre-bound functions of IU

RF

r1 r2

ALU

r3

LR

status

address

interrupt

CW

offset

output

r1 r2

MUL

r3

IU

const

Interrupts out

Figure 6.10. Sample datapath for pre-binding

Figure 6.10 shows an example of using the IU in a datapath. In any case, each bit of

the interrupt port of IU is connected to the interrupt signals and its interrupt2Controller

port is connected to the interrupt port of the controller. The input / output ports of IU (i.e.

ports i and o) are connected to the datapath. The control ports of the IU, i.e. loadMask

 88

and clearInterrupt are connected to control word. Whenever a pre-bound function is

used, the compiler determines the correct values of the control signals and schedules

them in proper clock cycle.

6.4 Analysis of NISC interrupt handling approach

So far we showed how NISC handles interrupts in between basic blocks of the

program. The only concern is that servicing the interrupt only between basic blocks may

increase the overall interrupt service delay if the basic blocks are very large. There are

two contributing factors to the interrupt service delay: (1) interrupt latency, i.e. the time

between when the interrupt is activated and when the execution flow is transferred to the

interrupt service routine (ISR); and (2) the delay of ISR itself, i.e. the time it takes to

execute the code in the ISR.

In our proposed approach, the size of basic blocks in the running application can

affect the interrupt latency. To examine this effect, we ran a series of embedded

benchmarks on a generic architecture (GN) shown in Figure 6.11. The benchmarks

include qsort, dijkstra, sha, adpcm.coder, adpcm.decoder and crc32 from MiBench (the

free version of EEMBC embedded benchmarks available at [40]), and a fixed-point Mp3

decoder (more than 10,000 lines of C code available at [42]). We generated the RTL

Verilog code of the design and used Xilinx ISE 8.1 toolset for simulation and synthesis of

the results. We synthesized the GN (Figure 6.11) on a Xilinx Virtex4 (90-nm) FPGA

package and achieved a clock frequency of 80 MHz. The Xilinx toolset also provides a

soft-core 32-bit RISC processor (MicroBlaze) that is already optimized Xilinx

technology. On a Vertix4 FPGA package, MicroBlaze runs at 105 MHz. MicroBlaze core

comes with specific fine-grained timing constraints that direct the synthesis tool to

 89

achieve the highest possible clock frequency. For synthesizing GN we only used a

general clock constraint and we expect that the clock frequency of GN can be further

improved by using more specific constraints. In any case, the achieved 80 MHz clock

frequency for GN seems to be reasonable enough to be used in our calculations.

Figure 6.11. A generic NISC Architecture (GN) used for analyzing size of basic blocks

Figure 6.12 shows the distribution of number of basic blocks that take less than 100

clock cycles to execute. The first column in this figure shows the number of basic blocks

that take 0 to 9 cycles to execute; the second column shows the number of basic blocks

that take 10 to 19 cycles, and so on. It is clear that in these benchmarks, the majority of

basic blocks take between 10 to 30 cycles. In other words, if we service interrupts in

between basic blocks, most of the time the interrupt latency will be less than 0.5 µ sec

(=50 cycles / 80 MHz).

Figure 6.13 shows the distribution of number of basic blocks that are longer than 100

cycles. Overall, there are 13 basic blocks in all of the benchmarks that are longer than

100 cycles. In general, although large basic blocks are rare in applications, in cases where

interrupt delay is critical, the compiler can break large basic blocks into a sequence of

smaller blocks whose size is determined by the frequency of the interrupts or the upper

 90

bound of their delay. Note that large basic blocks are typically the result of techniques

that improve the operation-level parallelism of the code. The compiler can break large

blocks into smaller ones after or during operation scheduling without negatively affecting

the utilization of parallelism. Compiler can also enable interrupt handling after fall-

through basic blocks (not ending with a jump) by adding a jump to the next block.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

qsort dijkstra sha crc32 adpcm.coder adpcm.decoder Mp3

Figure 6.12. Distribution of basic blocks shorter than 100 cycles

0

1

2

3

4

5

6

11
0

14
0

17
0

20
0

23
0

26
0

29
0

32
0

35
0

38
0

41
0

44
0

47
0

50
0

53
0

56
0

59
0

62
0

65
0

68
0

71
0

qsort dijkstra sha crc32 adpcm.coder adpcm.decoder Mp3

Figure 6.13. Distribution of basic blocks longer than 100 cycles

A more important factor in servicing interrupts is the ISR execution delay. We ran

the aforementioned benchmarks on both MicroBlaze and GN to compare their

performance. On average, the benchmarks ran 5 times faster on GN than MicroBlaze. We

 91

believe the performance of a typical ISR routine benefits similarly from execution on

GN. Additionally, in NISC, we can customize the architecture to further improve the

performance of particular piece of code, including an ISR.

The above experiments show that by processing interrupts in between basic blocks,

NISC and other statically-scheduled architectures can handle interrupts almost as

efficiently as their RISC counterparts.

 92

Chapter 7. Communication
case studies

In previous chapters we addressed different issues for designing a single IP block

using NISC Technology. However, rarely a single component is enough for a real life

application. Therefore, we have to make sure NISC based IPs can communicate with the

rest of the system. In this chapter, we show that solving the main three problems; i.e.

compilation, low-level programming, and interrupt support; is necessary and enough for

supporting any communication protocol, once we know how to model cycle-accurate

behaviors in NISC. This is an important benefit of NISC approach (and this thesis)

because we do not need to change the controller, the compiler, or even the C language to

support any communication scheme. In the rest of this chapter, we explain how to model

cycle-accurate behaviors in NISC. We show how any communication protocol can be

added to a NISC component and illustrate the approach on different typical

communication schemes.

As size of transistors shrink, delay and power of interconnects become more

dominant. Therefore, communication among components in a system becomes more

costly. To reduce communication cost, designers must explore different communication

 93

architectures and protocols to find the best combination for a particular application. In

such design methodology, the processing elements (IPs) must be flexible enough to adapt

to different communication paradigms (i.e. architecture and protocol). Such flexibility is

also the key feature for enabling IP reuse across different platforms. Therefore, it is

important that we do not fix the communication protocol of NISC components and be

able to support any possible communication scheme.

Communication protocols are often defined by an accurate timing diagram of events

on a set of involved signals. Both sender and receiver must comply with the required

events and their timing in order to successfully communicate. For IPs described at

Register-Transfer-Level (RTL), the timing of internal behavior of the IP is completely

known for the designer. Therefore, the communication protocol can be combined with the

description of the IP.

However, the problem becomes more challenging in design methodologies that use

un-timed high-level languages (e.g. C) to generate the RTL description automatically. In

such methodologies, the IP behavior is un-timed and hence, it is difficult to combine it

with the timed behavior of a communication interface.

In the processor domain, this problem is solved by adding a Communication

Interface (CI) unit to the processor architecture, and programming it in low-level

assembly language using IO instructions. One problem with this approach is that the IO

instructions (and hence the communication protocol) is tightly integrated in the

processor’s instruction decoder, controller, and its pipeline. Therefore, changing the

communication protocol requires complex changes in the processor. On the other hand,

this approach is not directly applicable to C-to-RTL methodologies because they do not

 94

have any instruction-set or assembly language. To address this issue, some synthesis tools

 [39] [61] limit the interfaces to simple queues and registers, and require special variable-

naming convention in the C code. Other synthesis tools [23], seek the solution in going

beyond the C language and using SystemC for describing the interfaces. This requires

relatively significant modification in the code. Furthermore, synthesizing SystemC is

more complex and is possible for only a very limited subset. Enforcing the synthesizable

subset is very challenging as well. Ideally, the goal is to develop IPs in a high-level

language and easily connect them to any communication protocol. In this chapter, we

show how NISC Technology can be used to achieve this goal without requiring any

extension to the C language and merely relying on the solutions presented in the previous

chapters.

7.1 Adding a communication protocol to NISC

On-chip communication protocols differ from each other based on the underlying

network topology and the way they handle synchronization, arbitration and data transfer.

Synchronization is referred to the mechanism used by producer to notify the consumer

about data being ready. Synchronization is usually carried out through interrupt or polling

flags. Arbitration means how to resolve conflicting requests for shared communication

resources. Prioritizing the requests or time-multiplexing them are two well-known

arbitration mechanisms. There are different ways for transferring data: commonly used

methods include memory-mapped, DMA and direct transfer.

To add any communication protocol to a NISC component, we partition it into two

parts: (a) a synchronous part that must be timed, and (b) an asynchronous part that can be

un-timed. We describe the timed part of the protocol in RTL and model the un-timed part

 95

in C. As Figure 7.1 illustrates, the un-timed part of the protocol uses pre-bound functions

to reference (i.e. control or poll) the timed behavior; and the timed part of the protocol

uses interrupt to notify the un-timed behavior about and event.

Figure 7.1. dividing a protocol to un-timed and timed behaviors

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

Figure 7.2. Software and hardware architecture of an IP

Figure 7.2 shows the software and hardware architecture of two IPs plugged into a

network. The software part includes the behavior of the application, communication

layers and the CI driver. In general, communication layers are used to properly assemble

or disassemble packets of data. Depending on the complexity of the communication

protocol, size and complexity of the communication layer varies.

 96

Both software and hardware must follow a particular protocol before an IP can be

plugged to a new network. On the hardware side the CI unit is replaced with the new one,

while on the software side the communication layers and CI driver must be updated. If

communication layers are properly used to separate the application from the driver, then

the application remains intact. Otherwise, the application must also be modified.

7.2 Case studies: communication interfaces for NISC

To add a communication interface to a NISC, we first need to identify the

synchronous and asynchronous parts of a given protocol. Then, we implement the

synchronous part in HDL languages, and the asynchronous part in software. The software

and hardware parts are ultimately integrated using pre-bound functions. This section

shows the concept using three examples: In the first example, a simple point-to-point

single-word interface is designed. In the second and third examples interface of shared

queue and bus are designed, respectively. In the first two examples, the protocol has not

specific synchronous part and therefore, there is not need to specify anything in HDL and

we can just use the pre-bound functions to control the underlying hardware. In the last

example, the protocol involves cycle-by-cycle behavior as well. This behavior is modeled

in standard HDL (in our case Verilog). The software uses pre-bound functions to control

the underlying hardware; and the hardware uses interrupt to notify the software about its

status.

7.2.1 Point-to-point single-word interface
The simplest way of communicating between two IP is through a register. To

communicate correctly, the producer and consumer must synchronize with each other

when a data is placed in the shared register or when it is consumed. To do so, one well-

 97

known way is to use Ready and Ack signals: the producer places the data into the register

and notifies the consumer by raising the Ready signal. The consumer reads the data and

raises the Ack signal. Once the producer receives the acknowledgement, it lowers the

Ready signal. Next, the consumer lowers the Ack signal to indicate the end of

communication. If more than one word must be transferred, the same sequence of signals

is repeated for each word. This protocol is called double-handshake because producer and

consumer synchronize with each other once before and once after transferring data.

Since, this protocol is asynchronous, producer and consumer may operate at two different

clock frequencies. Such asynchronous protocol can be used for communication between

voltage and frequency islands [5] designed to reduce power consumption. Since this

protocol is asynchronous, it can be completely described in software.

Figure 7.3 shows the hardware block diagram of the send and receive

communication interfaces. The send CI has two registers that store the values of Data and

Ready signals. The input signals of these register are connected to the IP. The receive CI

has only one register that stores the value of the Ack signal.

Figure 7.3. Block diagram of point-to-point single-word CIs (send and receive)

 98

Figure 7.4 and Figure 7.5 show the GNR of the CI components in the producer and

consumer components, respectively. These modules must be instantiated in the

corresponding component and properly connected to the internal datapath and external

ports of the architecture. Each CI provides a set of pre-bound functions for accessing the

Data, Ready, and Ack values. Note that the write functions, i.e. writeData, writeReady,

and writeAck write a value to a register, therefore they are defined as pipelined operations

with 1 stage. This way the compiler correctly schedules these pre-bound functions.

<Module type="SingleWordProducerCI">
 <Ports>
 <Clock n="clk" bitWidth="1" />
 <InPort n="iAck" bitWidth="1" />
 <OutPort n="oAck" bitWidth="1" />
 <CtrlPort n="LoadReady" bitWidth="1" default="0" />
 <InPort n="iReady" bitWidth="1" />
 <OutPort n="oReady" bitWidth="1" />
 <CtrlPort n="LoadData" bitWidth="1" default="0" />
 <InPort n="iData" bitWidth="32" />
 <OutPort n="oData" bitWidth="32" />
 </Ports>
 <Netlist>
 <Components>
 <Instance n="Data" type="Register" lib="MainLib"/>
 <Instance n="Ready" type="Register" lib="MainLib"/>
 </Components>
 <Connections>
 <Conn src="" srcPort="iAck" dest=" " destPort="oAck" />
 <Conn src="" srcPort="LoadReady" dest="Ready" destPort="load" />
 <Conn src="" srcPort="iReady" dest="Ready" destPort="i" />
 <Conn src="Ready" srcPort="o" dest="" destPort="oReady" />
 <Conn src="" srcPort="LoadData" dest="Data" destPort="load" />
 <Conn src="" srcPort="iData" dest="Data" destPort="i" />
 <Conn src="Data" srcPort="o" dest="" destPort="oData" />
 </Connections>
 </Netlist>
 <Annot_compiler>
 <Functions>
 <Function n="readAck" stateDependency="none" delay="0">
 <Output port="oAck"><Type n="int" /></Input>
 </Function>
 <Function n="writeReady" stateDependency="all" stages="1" delay="0">
 <Input port="iReady"><Type n="int" /></Input>
 <Ctrl port="LoadReady" val="1" />
 </Function>
 <Function n="writeData" stateDependency="all" stages="1" delay="0">
 <Input port="iData"><Type n="int" /></Input>
 <Ctrl port="LoadData" val="1" />
 </Function>
 </Functions>
 </Annot_compiler>
</Module>

Figure 7.4. GNR of single word point-to-point CI for producer component

 99

Assuming that the instance name for CI component in the producer and consumer

datapaths is ci, the PreboundCGenerator tool generates __$ci_readAck,

__$ci_writeReady, and __$ci_writeData pre-bound functions for the producer

side; and __$ci_writeAck, __$ci_readReady, and __$ci_readData for the

consumer side.

<Module type="SingleWordConsumerCI">
 <Ports>
 <Clock n="clk" bitWidth="1" />
 <CtrlPort n="LoadAck" bitWidth="1" default="0" />
 <InPort n="iAck" bitWidth="1" />
 <OutPort n="oAck" bitWidth="1" />
 <InPort n="iReady" bitWidth="1" />
 <OutPort n="oReady" bitWidth="1" />
 <InPort n="iData" bitWidth="32" />
 <OutPort n="oData" bitWidth="32" />
 </Ports>
 <Netlist>
 <Components>
 <Instance n="Ack" type="Register" lib="MainLib"/>
 </Components>
 <Connections>
 <Conn src="" srcPort="LoadAck" dest="Ack" destPort="load" />
 <Conn src="" srcPort="iAck" dest="Ack" destPort="i" />
 <Conn src="Ack" srcPort="o" dest="" destPort="oAck" />
 <Conn src="" srcPort="iReady" dest="" destPort="oReady" />
 <Conn src="" srcPort="iData" dest="" destPort="oData" />
 </Connections>
 </Netlist>
 <Annot_compiler>
 <Functions>
 <Function n="writeAck" stateDependency="all" stages="1" delay="0>
 <Input port="iAck"><Type n="int" /></Input>
 <Ctrl port="LoadAck" val="1" />
 </Function>
 <Function n="readReady" stateDependency="none" delay="0">
 <Output port="oReady"><Type n="int" /></Input>
 </Function>
 <Function n="readData" stateDependency="none" delay="0">
 <Output port="oData"><Type n="int" /></Input>
 </Function>
 </Functions>
 </Annot_compiler>
</Module>

Figure 7.5. GNR of single word point-to-point CI for consumer component

Figure 7.6(a) and (b) show driver codes of the send and receive CIs in the producer

and consumer IPs respectively. In the send driver, line (3) loads the data into Data

 100

register through pre-bound function __$ci_writeData(). Then, it writes value “1”

into register Ready through pre-bound function __$ci_writeReady(1). Next, in line

(5), it waits until Ack signal become “1”. In line (6), signal Ready is lowered by writing

value “0” into the Ready register. Similarly, the receive driver (shown in Figure 7.6(b))

follows the protocol via calling pre-bound functions __$ci_writeAck(),

__$ci_readReady(), and __$ci_readData().The NISC cycle-accurate

compiler uses the CI information captured in GNR to directly control the underlying

hardware via C description. In this way, the C description of IP can be easily combined

with the C description of the communication protocol to generate the correct RTL.

1
2
3
4
5
6
7
8

void send(int data)
{
 __$ci_writeData(data);
 __$ci_writeReady(1);
 while(__$ci_readAck()==0);
 __$ci_writeReady(0);
 while(__$ci_readAck()==1);
}

1
2
3
4
5
6
7
8

int receive()
{
 while(__$ci_readReady()==0);
 int data = __$ci_readData();
 __$ci_writeAck(1);
 while(__$ci_readReady()==1);
 __$ci_writeAck(0);
}

(a) (b)
Figure 7.6. (a) send, (b) receive driver code for point-to-point single-word CIs

The protocol of this section has a high latency due to the need for handshaking for

each word. Additionally, if one of the parties is significantly slower, the other one will

also be slowed down during the transaction. To address this issue often a queue is used to

buffer the data, as shown in the next section.

7.2.2 Shared queue interface
Figure 7.7 shows the block diagram of two IPs communicating through a shared

queue. The queue has Push, Pop, Datain, Dataout, and IsEmpty ports that are connected to

send and receive CIs. When Push signal is “1”, one word is pushed into the queue, and

when Pop signal is “1”, one word is popped from the queue. The IsEmpty signal becomes

 101

“1” when the queue is empty. The queue may have two clocks in order to push and pop at

two different clock frequencies. In this protocol, the producer pushes the data into the

queue and the consumer pops it from the queue. The parties can use queue status

(IsEmpty signal) for synchronization between them. Since no additional signals are

necessary for synchronization, the send and receive CIs (shown in Figure 7.7) do not

contain any registers. The CI components are in fact place holders in the GNR

description of each IP that provide the description of pre-bound functions and act as a

proxy for controlling the queue. In general, a proxy component can enable the NISC

compiler to control a component that is outside of the datapath of a NISC component.

Figure 7.7. Block diagram of point-to-point queue-based CIs (send and receive)

Figure 7.8 and Figure 7.9 show the GNR description the queue CIs for producer and

consumer, respectively. Each component provides pre-bound functions for push/pop or

reading the status of the queue. Note that since push and pop are clocked operations, the

corresponding pre-bound functions are defined as pipelined with one stage. Figure

 7.10(a) and (b) show the send and receive drivers. The send driver first waits until the

queue is empty of any previous data (line 3). Then, it consecutively pushes N words into

the queue. On the receiver side, the driver receives N words in a loop (lines 3-6) by

popping from the queue. If the sender has slower clock frequency than the receiver, then

the queue may become empty in the middle of a transaction. In such case, the receiver

must wait (line 4 of Figure 7.10(b)) until the sender pushes more data into the queue.

 102

<Module type="QueuePrcducerCI">
 <Ports>
 <Clock n="clk" bitWidth="1" />
 <ControlPort n="iPush" bitWidth="1" />
 <OutPort n="oPush" bitWidth="1" />
 <InPort n="iIsEmpty" bitWidth="1" />
 <OutPort n="oIsEmpty" bitWidth="1" />
 <InPort n="iData" bitWidth="32" />
 <OutPort n="oData" bitWidth="32" />
 </Ports>
 <Netlist>
 <Components></Components>
 <Connections>
 <Conn src="" srcPort="iData" dest="" destPort="oData" />
 <Conn src="" srcPort="iPush" dest="" destPort="oPush" />
 <Conn src="" srcPort="iIsEmpty" dest="" destPort="oIsEmpty" />
 </Connections>
 </Netlist>
 <Annot_compiler>
 <Functions>
 <Function n="push" stateDependency="all" stages="1" delay="0">
 <Input port="iData"><Type n="int" /></Input>
 <Ctrl port="iPush" val="1" />
 </Function>
 <Function n="isEmpty" stateDependency="none" delay="0">
 <Output port="oIsEmpty"><Type n="int" /></Input>
 </Function>
 </Functions>
 </Annot_compiler>
</Module>

Figure 7.8. GNR of point-to-point queue-based CI for producer component

<Module type="QueueConsumerCI">
 <Ports>
 <Clock n="clk" bitWidth="1" />
 <ControlPort n="iPop" bitWidth="1" />
 <OutPort n="oPop" bitWidth="1" />
 <InPort n="iIsEmpty" bitWidth="1" />
 <OutPort n="oIsEmpty" bitWidth="1" />
 <InPort n="iData" bitWidth="32" />
 <OutPort n="oData" bitWidth="32" />
 </Ports>
 <Netlist>
 <Components></Components>
 <Connections>
 <Conn src="" srcPort="iData" dest="" destPort="oData" />
 <Conn src="" srcPort="iPop" dest="" destPort="oPop" />
 <Conn src="" srcPort="iIsEmpty" dest="" destPort="oIsEmpty" />
 </Connections>
 </Netlist>
 <Annot_compiler>
 <Functions>
 <Function n="pop" stateDependency="all" stages="1" delay="0>
 <Output port="iData"><Type n="int" /></Output>
 <Ctrl port="iPop" val="1" />
 </Function>
 <Function n="isEmpty" stateDependency="none" delay="0">
 <Output port="oIsEmpty"><Type n="int" /></Input>
 </Function>
 </Functions>
 </Annot_compiler>
</Module>

Figure 7.9. GNR of point-to-point queue-based CI for consumer component

 103

1
2
3
4
5
6

void send(int N, int* data)
{
 while(__$ci_isEmpty()==1);
 for(i=0;i<N; i++)
 __$ci_push(data[i]);
}

1
2
3
4
5
6
7

void receive(int N, int* data)
{
 for(i=0;i<N; i++)
 while(__$ci_isEmpty()==1);
 data[i++] = __$ci_top();
 __$ci_pop();
}

(a) (b)
Figure 7.10. (a) send, (b) receive driver code for point-to-point queue-based CIs

The queue protocol is considered a non-blocking protocol because producer can

resume its computation without waiting for the consumer to receive the data. This

improves the performance of the producer IP. In general, point-to-point communications

are used when each IP communicates with one or a few other IPs. To communicate with

more IPs, shared buses may be used.

7.2.3 Double-Handshake bus interface
Suppose that we have a double-handshake shared bus that allows transmission of

variable size packets in a non-blocking message-passing fashion. Figure 7.11 shows the

block diagram of two IPs communicating through such shared bus. On the producer side,

the CI stores the data in a queue and then requests the bus from arbiter. After getting bus

grant, the CI places the consumer address on the AddrBus and raises the Ready signal.

Once the Ack signal becomes “1”, the producer CI puts one word per clock cycle on the

DataBus. After sending the entire data, the CI lowers the Ready signal and releases the

bus for the next communication. On the consumer side, the CI stores the data in a queue

and interrupts the consumer IP. The timing diagram of this protocol is shown in Figure

 7.12. The arrows show the sequence of the events.

 104

Figure 7.11. Block diagram of shared-bus CIs (send and receive)

Figure 7.12. Timing diagram of the example bus protocol

This protocol is considered synchronous because it must transfers one word per cycle

without any handshaking for each individual word. Implementing synchronous protocols

are not possible in software, because software cannot guarantee the required timing.

 105

Therefore, the protocol is partitioned into an asynchronous part handled by software and

a synchronous part managed by Finite State Machines (FSM) inside CIs. Figure 7.13

shows the send and receive state machines. The send and receive FSMs are very small

with five and four states, respectively. The FSM inside each CI will be implemented in

the RTL description of the CI component. The asynchronous part of the protocol in

software and its synchronous part in hardware are linked to each other via the pre-bound

functions in GNR. The CI on the producer side provides four pre-bound functions that

control the signals between the datapath and CI (see Producer IP in Figure 7.11). The pre-

bound functions include: __$ci_isBusy(),__$ci_start(), __$ci_push(),

and __$ci_setAddr(). The CI on the consumer side provides four pre-bound

functions that control the signals between the datapath and CI (see Producer IP in Figure

 7.11). The pre-bound functions include: __$ci_isEmpty(), __$ci_pop(),

__$ci_top(), and __$ci_done(). The interrupt signal of this CI is connected to

controller in the datapath of consumer IP.

Figure 7.14 shows the drivers of this protocol. The send driver (Figure 7.14(a)) waits

until the CI is done sending any previous message (line 4). Then, it loads the Addr

register with the receiver address. Next, it pushes N words into the queue (lines 6-7) and

issues the Start command (line 8). On the consumer side, first the CI receives all data in

every cycle and then notifies the IP via interrupt. Therefore the, the receiver driver is

written as an interrupt routine (Figure 7.14(b)). For each interrupt, the driver pops the

data from the queue and issues the Done command. The mapping between the pre-bound

functions and ports of each CI are shown in Figure 7.15.

 106

Figure 7.13. FSMs inside (a) send and (b) receive CIs

 107

1
2
3
4
5
6
7
8
9

void send(int N, int* data, int recAddr)
{
 while(__$ci_isBusy()==1);
 __$ci_setAddr(recAddr);
 for(int i=0; i<N;i++)
 __$ci_push(data[i]);
 __$ci_start();
}

1
2
3
4
5
6
7
8
9

interrupt Receive (){
 disable interrupt
 buffer[0] = top();
 int i=1;
 while (__$ci_isEmpty()==0)
 __$ci_pop();
 buffer[i++] = __$ci_top();
 __$ci_done();
 enable interrupt
}

(a) (b)
Figure 7.14. (a) send, (b) receive driver code for shared-bus CIs

function input ctrl output
__$ci_isBusy − − IsBusy
__$ci_setAddr Addr LoadAddr −

__$ci_push Data Push −

__$ci_start − Start −

function input ctrl output
__$ci_top − − Data
__$ci_pop − Pop −

__$ci_isEmpty − − IsEmpty
__$ci_done − Done −

(a) (b)
Figure 7.15. Pre-bound functions of (a) send, (b) receive CIs for shared bus

This example shows how synchronous parts of a protocol are implemented in

hardware, while its asynchronous parts are written in software. The software and

hardware parts are ultimately integrated with each other through pre-bound functions.

This approach can be generalized to implement other types of communication interfaces

as well. These examples also show that without adding low-level programming (Chapter

 Chapter 5) and interrupt (Chapter Chapter 6) NISC could not practically implement any

communication protocol and be integrated in a larger system. In other words, the

compilation algorithm, the pre-bound functions and variables (low-level programming),

and interrupt support are the necessary and sufficient features for developing an IP using

NISC technology and integrating them into systems.

 108

Chapter 8. Experiments

We have developed a complete NISC compiler and have integrated it with the rest of

NISC toolset. The whole toolset is available for download from NISC Website [47]. We

have also developed an online version of the toolset that does not need local installation

and can be run via web. The experiments presented in this chapter can be run on the

online version of the toolset as well.

In this chapter, we present four sets of experiments. To show the generality and

efficiency of the compilation algorithm, in Section 8.1, we show the compilation and

simulation results of several benchmarks on several different architectures. In Section

 8.2, we compare the performance and code size of several benchmarks on a RISC

processor versus a general-purpose NISC architecture. Then in Section 8.3, we show a

customization example in NISC technology by selecting one of the benchmarks, namely

the 2D DCT, and designing different custom datapaths to significantly improve its

performance and energy consumption. Finally in Section 8.4 we show examples of

communicating NISC components.

 109

8.1 Compiling on different architectures

To evaluate the efficiency of the proposed compilation algorithm for NISC

architectures, we compiled and ran a set of benchmarks on the set of generic NISC

architectures. These architectures include: GN0, which has no pipelining and data

forwarding (Figure 8.1), GN1, which has pipelining but no data forwarding (Figure 8.2),

GN2, which has both pipelining and data forwarding (Figure 8.3), and GN3, with a non

uniform structure (Figure 8.4). In all of these architectures, we used a clocked data

memory which had pipelined operations. Also, note that the controller pipeline (the path

from CW port of controller back to its status port) is different in each architecture. Hence

the compiler must also detect the branch delays to generate correct FSMs. The

benchmarks include dijkstra, sha, adpcm.coder, adpcm.decoder, qsort and crc32 from

MiBench (the free version of EEMBC embedded benchmarks available at [40]), and a

fixed-point Mp3 decoder (more than 10,000 lines of C code available at [42]).

Figure 8.1. GN0 with no pipelining or data forwarding

 110

Figure 8.2. GN1 with pipelining but no data forwarding

Figure 8.3. GN2 with pipelining and data forwarding

Figure 8.4. GN3 with non uniform structure

 111

Table 8.1. Execution and compilation time for various architectures

 #cycles compilation time (s)
Benchmark GN0 GN1 GN2 GN3 GN0 GN1 GN2 GN3

dijkstra - - - 49629 - - - 0.11
sha 68874 77622 60522 58910 0.20 0.25 0.41 0.23
adpcm.coder - - - 37890 - - - 0.08
adpcm.decoder 109518 173830 146214 118350 0.03 0.05 0.06 0.05
qsort - - - 138496 - - - 0.19
CRC32 19083 26109 18081 15079 0.02 0.02 0.01 0.02
FpMp3 - - - 759296 - - - 19.20

We compiled every benchmark on all possible architectures and generated the RTL

Verilog codes. We simulated these codes to get both the accurate execution cycle counts,

and to verify that the simulation outputs exactly match with that of benchmarks running

on a host PC. Table 8.1 shows the execution and compilation times for each benchmark.

Some benchmarks that needed a divider could be only compiled on the GN3. These

experiments showed that the compilation algorithm works correctly and can properly

utilize different datapath structures. Also, the algorithm is fast enough to be used for

practical settings.

8.2 Compilation on a general-purpose NISC

The main goal of NISC Technology is to enable efficient customizations, which

requires the NISC cycle-accurate compiler support and handle different types of

customized architectures. To get a sense of how efficient the compiler can utilize a

datapath, we compiled and ran the benchmarks on the generic NISC processor shown in

Figure 8.5, and compared the results with a RISC processor with similar complexity. We

simulated and synthesized all results to compare their quality. We used Xilinx ISE 8.1

toolset for simulation and synthesis of the results. As a base for comparison, we chose the

32-bit Xilinx MicroBlaze soft-core processor. We chose this RISC processor because it is

a commercial core that is already optimized for Xilinx technology and hence is a good

 112

base for comparing our results to its clock frequency, area, and performance. It also

comes with a complete toolset for compiling programs and cycle-accurate simulation of

the results. This processor is included in the Xilinx tools as an encrypted soft-core. For

each benchmark, we validated the output generated by Verilog simulation with the

corresponding output generated from running that benchmark on a PC desktop.

Figure 8.5. A generic NISC architecture (GN)

We synthesized MicroBlaze (MB) and a generic NISC (GN) on a Xilinx Virtex4 (90-

nm) FPGA package. The bit-width of control words in GN is 101 bits as opposed to 32-

bit instructions in MicroBlaze. Table 8.2 shows the area and clock frequency of these

processors. The clock frequency of MicroBlaze is 105MHz, as opposed to 80MHz for

NISC. In NISC, since the divider unit is pipelined and multiplier is not pipelined, the

critical path goes through the multiplier. In MicroBlaze, a pipelined multiplier is used

which improves the clock frequency. The third column of the table shows the area of the

processors in terms of number of gates. MicroBlaze has more gates than GN, which we

believe is because of the additional logic for decoding the instructions and controlling the

pipeline. MicroBlaze core comes with specific fine-grained timing constraints that direct

the synthesis tool to achieve the highest possible clock frequency. For synthesizing GN

we only used a general clock constraint and we expect that the clock frequency of NISC

can be further improved by using more specific constraints.

 113

Table 8.2. Area and clock frequency of MicroBlaze and GN
Processors Clock freq.(MHz) Area (gates)
MicroBlaze 105 39574
GN 80 35317

Table 8.3. Comparing MicroBlaze with GN

 MicroBlaze GN GN vs. MicroBlaze

Benchmark #cycles code size
(bits) #cycles code size

(bits)
speedup code-size

ratio
dijkstra 25,927,532 1,928 10,631,310 3,082 1.86 1.60
sha 183,030,479 3,156 18,371,827 4,901 7.59 1.55
adpcm.coder 256,748,693 1,364 84,251,684 2,671 2.32 1.96
adpcm.decoder 322,766,405 1,956 66,504,319 2,068 3.70 1.06
CRC32 209,436,647 1,364 26,008,604 1,100 6.14 0.81
FpMp3 8,861,336 44,620 927,307 70,426 7.28 1.58

Average 167,795,182 9,065 34,449,175 14,041 4.81 1.43

Table 8.3 compares MicroBlaze and GN in terms of number of cycles and code size.

For this experiment, we set the MicroBlaze compiler optimizations to the maximum to

achieve the maximum performance. MiBench provides a small and a large input for the

benchmarks as well. For simulating the Mp3 decoder, we used the scope1.mp3 (44.1KHz,

96kbit/s, stereo) available at [24]. The reported cycle numbers in Table 8.3 are for

simulating the small inputs of MiBench benchmarks and processing 1 frame of the Mp3

file. The second column of Table 8.3 shows number of cycles that it takes for MicroBlaze

to run each benchmark. The third column shows the size of instruction section (.text) of

the .elf file generated by the compiler. Similarly, the fourth and fifth columns show the

number of cycles and code size for GN. The sixth column shows the execution-delay

ratio of MicroBlaze vs. GN. The execution delay is calculated by diving number of cycles

by clock frequency of the processor. Although GN runs at a lower clock frequency, it

runs the benchmarks, on average, 4.8 times faster than MicroBlaze. The last column

shows the ratio between code size of GN and MicroBlaze. On average, GN consumes

1.43 times more memory compared to MicroBlaze.

 114

These experiments illustrate that even in a general NISC without any application

specific customizations; we can achieve better performance since the compiler can utilize

the datapath more efficiently. The results are generated using some code compression

techniques [10] that increate the controller pipelining depth and hence the branch delay

slot. The compression techniques are applied during controller synthesis and are not part

of this thesis. But the results also show that the compiler can correctly support controller

pipelining among other features.

8.3 Custom datapath design for DCT

In this section, we include an illustrative example that shows the customization

capability of NISC technology. This example explores the design space for different

quality metrics such as performance, area, and energy consumption. The step by step

details of this customization experiment can be found in [11]. We only include a

summary of this experiment here for a quick reference and to show that our NISC cycle-

accurate compiler can handle very irregular custom datapaths as well.

The goal is to design a custom pipelined datapaths for DCT algorithm to further

improve the performance and power consumption of the design. The definition of

Discrete Cosine Transform (DCT) [43] for a 2-D N×N matrix of pixels is as follows:

 ∑∑
−

=

−

=

++
=

1

0

1

0
2 2

)12(cos
2

)12(cos],[1],[
N

m

N

n N
vn

N
umnmf

N
vuF ππ

Where u, v are discrete frequency variables (0≤u, v≤N-1), f[i, j] gray level of pixel at

position (i, j), and F[u,v] coefficients of point (u, v) in spatial frequency. Assuming N=8,

matrix C is defined as follows:

16

)12(cos
8
1]][[πunnuC +

=

 115

Based on matrix C, an integer matrix C1 is defined as follows: C1 = round(factor ×

C). The C1 matrix is used in calculation of DCT and IDCT: F = C1 × f × C2, where, C2=

C1T. As a result, DCT can be calculated using two consecutive matrix multiplications.

Figure 8.6(a) shows the C code of multiplying two given matrix A and B using three

nested loops. As a base for comparison and start point for customizations, a NISC-style

implementation of a MIPS M4K datapath [41] (called NMIPS) is chosen. The bus-width

of the datapath is 16-bit for a 16-bit DCT precision, and the datapath does not have any

integer divider or floating point unit. The clock frequency of 78.3MHz was achieved after

synthesis and Placement-and-Routing (PAR). Two synthesis optimizations of retiming

and buffer-to-multiplexer conversions are applied to improve the performance.

In general, customization of a design involves both software and hardware

transformations. To increase the parallelism in code, the inner-most loop of the matrix

multiplication code is unrolled, the two outer loops are merged, and some of the costly

operations such as addition and multiplication are converted to OR and AND. In DCT,

the operation conversions are possible because of the special values of the constants and

variables. The transformed code is shown in Figure 8.6(b). In the next step, a custom

architecture is designed for the transformed DCT code. This architecture is called

CDCT1 and is shown in Figure 8.7(a). Several customizations are applied to this initial

custom architecture to improve the performance, area, and energy consumption. These

customizations include reducing bit width of components, removing underutilized

resources, and repeatedly adding registers to break the critical path delay. After each

customizations, the modified C code of Figure 8.6(b) is compiled on the refined

architecture. In each step, the results are synthesized and analyzed to figure out what part

 116

of datapath can be further customized for more improvements. After seven iterations, the

final architecture is called CDCT7 as shown in Figure 8.7(b). in this last architecture, the

multiplier is considered to be a multi-cycle component because in the target FPGA, this

multiplier is mapped to an ASIC unit that cannot be pipelined or optimized.

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 sum=0;
 for(int k=0; k<8; k++)
 sum= sum+A[i][k]×B[k][j];
 C[i][j]= sum;
 }

ij=0;
do {
 i8 = ij & 0xF8;
 j = ij & 0x7;
 aL= *(A+(i8|0)); bL= *(B + (0|j)); sum = aL × bL;
 aL= *(A+(i8|1)); bL= *(B + (8|j)); sum+= aL × bL;
 aL= *(A+(i8|2)); bL= *(B + (16|j)); sum+= aL × bL;
 aL= *(A+(i8|3)); bL= *(B + (24|j)); sum+= aL × bL;
 aL= *(A+(i8|4)); bL= *(B + (32|j)); sum+= aL × bL;
 aL= *(A+(i8|5)); bL= *(B + (40|j)); sum+= aL × bL;
 aL= *(A+(i8|6)); bL= *(B + (48|j)); sum+= aL × bL;
 aL= *(A+(i8|7)); bL= *(B + (56|j));
 *(C + ij) = sum + (aL × bL);
} while(++ij!=64);

(a) (b)
Figure 8.6. (a) Original and (b) Transformed matrix multiplication

const

RF

Comp:
Not Eq.

ALU:
Add/And

OR

reg1
DMem

Mul

Adder

aL bL

P

SUM

M3

ar

M2

M1

offset

CMem

AG

(a) (b)

Figure 8.7. Block diagram of (a) CDCT1, (b) CDCT7

 117

Table 8.4 compares the performance, power, energy, and area of the all NISC

implementations. The third column shows the maximum clock frequency after Placement

and Routing. The fourth column shows the total execution time of the DCT algorithm

calculated based on number of cycles and the clock frequency. Note that although in

some cases (such as CDCT4 and CDCT5) the number of cycles increases, the clock

frequency improvement compensates for that. As a result, the total execution delay

maintains a decreasing trend. Column fifth shows the average power consumption of the

NISC architectures while running the DCT algorithm. All the designs are stimulated with

the same data values. The power consumption of each design is computed using the

Xilinx XPower tool and the signal activities collected from Post-Placement and Routing

simulation. Column sixth shows the total energy consumption calculated by multiplying

power and execution time.

Table 8.4. Performance, power, energy, and area of the DCT implementations

 # Cycles Clock
freq

DCT
exec. time(us) Power (mW) Energy (uJ) Normalized

area
NMIPS 10772 78.3 137.57 177.33 24.40 1.00
CDCT1 3080 85.7 35.94 120.52 4.33 0.81
CDCT2 2952 90.0 32.80 111.27 3.65 0.71
CDCT3 2952 114.4 25.80 82.82 2.14 0.40
CDCT4 3080 147.0 20.95 125.00 2.62 0.46
CDCT5 3208 169.5 18.93 106.00 2.01 0.43
CDCT6 3208 171.5 18.71 104.00 1.95 0.34
CDCT7 3460 250.0 13.84 137.00 1.90 0.35

Figure 8.8 shows the performance, power, energy and area of the designs normalized

against NMIPS. The total execution delay of DCT algorithm has a decreasing trend,

while the power consumption decreases up to CDCT3 and then increases. The energy

consumption significantly drops at CDCT1, because of the reduction in number of cycles

and power consumption. From CDCT1 to CDCT7, the energy decreases gradually in a

 118

slow paste. As shown in the figure, CDCT7 is the best design in terms of delay and

energy consumption, while CDCT3 is the best in terms of power, and CDCT6 is the best

in terms of area. As a result, CDCT3, CDCT6, and CDCT7 are considered the pareto-

optimal solutions. Note that minimum energy and minimum power are achieved by two

different designs: CDCT7 and CDCT3, respectively. Compared to NMIPS, CDCT7 runs

10 times faster, consumes 1.3 times less power and 12.8 times less energy. Also, it

occupies 2.9 times less area than NMIPS.

0
0.1

0.2
0.3
0.4

0.5
0.6

0.7
0.8
0.9

1
1.1

NMIPS CDCT1 CDCT2 CDCT3 CDCT4 CDCT5 CDCT6 CDCT7

N
or

m
al

iz
ed

 V
al

ue
s

Normalized exec. Time Normalized power
Normalized area Normalized energy

Figure 8.8 Comparing different DCT implementations

In summary, designing a custom datapath for a given application by properly

connecting functional units and pipeline registers is the key to reducing number of cycles

and energy consumption. Also, eliminating the unused logic and interconnects, adjusting

the bus-width of the datapath to the application requirement, signal gating, and clock

gating are the key to reducing power consumption. The NISC compiler makes these

customizations very easy to apply. It allows the designer to modify the component netlist

of the datapath and then uses the proposed compilation algorithm to automatically map

the application on the given datapath.

 119

8.4 Communicating NISC components

In this section, we describe the implementation results of two multi-NISC systems

for a fixed-point Mp3 benchmark downloaded from [42]. These NISCs communicate via

the shared bus protocol that we described in Section 7.2.3. In general, an Mp3 audio file

contains several frames. For a stereo file, each frame has two channels (i.e. left and right

channels). In the Mp3 decoder, the frames go through three main phases, namely,

decode_frame, synthesis_frame and output_pcm. Profiling the Mp3 decoder on the

generic NISC architecture of Figure 8.5 showed that 63% of execution time is spent in

decode_frame, 25% in synthesis_frame, and 11% in the output_pcm. We realized that

there are two approaches to parallelize the Mp3 application: (a) processing each channel

separately, or (b) pipelining the phases. However, the Mp3 decoder was originally

targeted for desktop PCs and separating the channels completely requires rewriting most

of the code. Alternatively, we decided to separate the synthesis_frame phase for each

channel because it required minimum code modifications. Such partitioning can reduce

the execution time of synthesis_frame to half and hence can at most improve the

performance by 12.5%. As for the second system, we pipelined the application into two

stages where the first pipeline stage implements decode_frame phase and the second

stage implements synthesis_frame and output_pcm phases. In this approach, processing

delay of one frame is expected to increase due to the communication overhead. However,

since the decode_frame of one frame is overlapped with the synthesis_frame and

output_pcm of another frame, the overall performance can be improved by up to 36%

(=min(63, 25+11)).

 120

Table 8.5. Area and clock frequency of MicroBlaze and GN

Processors Clock freq.(MHz) Area (gates) #cycles for
1 frame speedup

MicroBlaze 105 39574 8,861,336 1
GN 80 35632 897,452 7.28

multi-core GN 80 73046 - -

We implemented the Mp3 decoder on a MicroBlaze, a single GN, and two multi-core

configuration of GN. Table 8.5 shows the clock speed and area of each architecture as

well as their performance for decoding one frame of audio. For simulating the Mp3

decoder, we used the scope1.mp3 (44.1KHz, 96kbit/s, stereo) available at [24].

Table 8.6. Throughput of three Mp3 implementations

Systems #cycles for
1 frame

speedup for
1 frame(%)

#cycles for
25 frames

speedup for
25 frames (%) frames/sec

SingleCore 897,452 0.00 22,800,961 0.00 88
Coprocessor 803,357 10.48 20,205,994 11.38 99

Pipelined 917,204 -2.20 16,433,655 27.93 122

Table 8.6 shows the results of implementing the Mp3 decoder in three

configurations. The second and fourth columns show number of cycles for processing

one frame, and 25 frames in each configuration and the third and fifth columns show the

respective speedups. Figure 8.9 shows the block diagram of the three implementation

configurations. Figure 8.9(a) shows the SingleCore configuration in which the entire Mp3

decoder runs on one GN. Figure 8.9(b) shows the Coprocessor configuration in which the

Mp3 decoder runs on two GAs. In this case, one of GN acts as a coprocessor for the main

GN and runs the synthesis_frame phase for left channel while the main GN runs the same

phase for the right channel. The main GN also runs the other phases for both channels.

The total performance improvement in this case is 10.48% which is close to the expected

12.5%. For each channel, the main GN sends 1152 words to the coprocessor GN and then

receives 1152 words from it. The communication overhead is responsible for the 2%

performance loss from the expected upper bound, i.e. 12.5%. Figure 8.9(c) shows the

 121

Pipelined configuration, where one GN runs the decode_frame of both channels and

sends 2×1152 words to the second GN to perform synthesis_frame and output_pcm. In

this configuration, the processing time for a single frame is increased by 2% but the

overall throughput of the system is increased by 28%. Similarly, the communication

overhead is responsible for the 8% performance loss from the expected upper bound, i.e.

36%. The communication overhead in the Pipelined configuration has increased because

of the extra synchronization which was not necessary in Coprocessor-Sys configuration.

Figure 8.9. Implementing Mp3 (a) single core, (b) with coprocessor, and (c) pipelined

According to the Mp3 standard, at least 38 frames must be played per second.

MicroBlaze can only run 12 frames per second. The last column of Table 8.6 shows the

throughput of these three NISC based configurations. Clearly, this throughput is much

more than what the standard required. To save power, the SingleCore and Coprocessor

configuration can run with half their clock frequency. The clock frequency of the

Pipelined system can be reduced by two thirds while still meeting the throughput

constraints of the standard.

 122

Chapter 9. Conclusion and
future work

In this thesis, we introduced design flow based on No-Instruction-Set-Computer

(NISC) Technology. In NISC datapath and controller are generated separately. Based on

the application behavior, the datapath is generated or selected from a database. Then our

cycle-accurate compiler directly maps a given application on a given datapath. The

contributions of this thesis can be summarized as follows:

1. We explained the NISC design flow and explained that it is a better alternative to

HLS and ASIP for developing custom processing elements. In HLS, designer has

little control on generated results and changes in the input description (e.g. C)

cannot be directly correlated to changes in the output RTL. HLS techniques suffer

from bad output quality and limited application size/complexity support. This is

mainly because supported target datapaths are very limited and connectivity

constraints are not considered by HLS techniques. On the other hand, in ASIP,

finding and implementing custom instructions is very complex. Besides, ASIP is

not suitable for dedicate custom blocks because they always extend a base

processor, which imposes a minimum complexity overhead on the results. In

 123

NISC, the full datapath (resources and their connectivity) is used for compilation.

Furthermore, it imposes almost no minimum requirement on the complexity of the

architecture. In this way NISC can help the designer to achieve a balance between

designer productivity and design quality.

2. We presented the details of a NISC architecture and its execution style. The core

philosophy in designing the architecture was that “we should be able to remove or

customize anything that is not used by the application from the architecture

without requiring any changes to the toolset”. Since the compiler depends on the

internals of the controller, therefore the controller must be kept as simple as

flexible as possible. The features of the architecture are modeled mainly in the

datapath and the compiler generates tightly scheduled control bits to control the

datapath resources in every cycle (hence the name cycle-accurate compiler). We

presented a modeling approach for capturing and describing the architecture. In

addition to structural details, this model uses the notion of machine actions (MA)

to capture timing and to map high level operations such as storage read/write, data

transfer, or operation execution to low-level hardware resources. We use four

types of MAs for modeling the architecture: Read, Write, Transfer, and Execute.

The compiler schedules the MAs in different clock cycles to construct an FSM

and generate the stream of control words. Compared to previous modeling

approaches, our model is very conscise and can simultaneously support both

efficient compilation and efficient RTL generation. While other models could be

used only for processors, our model can be used for small dedicated IPs as well.

Additionally, in our model we can consider the actual clock period and

 124

component timing in order to accurately support operation chaining and multi-

cycling. Finally, previous models and approaches did not support controller

pipelining and partial data forwarding.

3. We presented a compilation algorithm for mapping the CDFG of the program on

a given datapath model. We showed that in NISC operation scheduling and

resource binding must be done simultaneously. This is because the connectivity of

datapath components is predetermined before compilation, and hence during

scheduling we need to the binding of operations in order to know their delay and

starting time of their consumer operations. We presented a compilation algorithm

which is different from HLS techniques because it assumes that the datapath is

given and is fixed during scheduling and binding. It performs the scheduling and

binding simultaneously while processing the CDFG backward. It is also different

from conventional instruction-set based compiler techniques because it directly

maps the program on a given datapath without using any high-level instruction

abstraction. Consequently, it must deal with all structural details of the

architecture and solve more complex problems. This algorithm supports pipelined

and multi-cycle operations, operation chaining, datapath/controller pipelining, and

none uniform data forwarding. In previous approach operation pipelining,

chaining, and multi-cycling could not be supported as efficiently as in our

approaches because they did not have access to the detailed structural details of

the architecture. Furthermore, previous approaches did not support controller

pipelining and non-uniform data forwarding.

 125

4. Since NISC has no predefined instruction-set, it also does not have any assembly.

However, to use it in practical situations it must provide a mechanism for low-

level programming. We solved this problem by adding pre-bound functions and

variables to the NISC compiler enabling low-level programming in C. These

functions and variables are mapped directly to the hardware resources by the

compiler. The pre-bound functions do not have body, are treated as operations,

and can be similarly scheduled. This is different from intrinsic functions in

compilers which either have a body, or are only used as compiler directives

without any effect on the execution of the program. Pre-binding is much more

flexible and productive than using assembly in the program. The pre-bound

functions and variables have C syntax and can be easily mixed with the rest of the

application. Also, they are automatically scheduled on one or more resources by

the compiler and without user intervention. In contrast, assembly codes cannot be

mixed with the rest of the program as easily and in the case of statically-scheduled

architectures (i.e. microcoded and VLIW), they require the programmer to

explicitly provide the schedule of the operations as well.

5. NISC has no predefined instruction-set and instead executes the program using

very tightly coupled statically-scheduled control words generated by the compiler.

Therefore a NISC component, especially when pipelined, cannot be arbitrarily

interrupted. We showed that the interrupts can be safely serviced between basic

blocks in NISC. Our solution included a minimal modification int the contoroller

as well as adding an interrupt unit to the datapath. When interrupt support is not

needed, the interrupt unit is removed from datapath and the extra logic in the

 126

controller is optimized away during logic optimization. Therefore, our solution

does not impose any extra overhead on NISC components not requiring interrupt.

6. We showed compiler algorithm, low-level programming, and interrupt support are

the necessary and enough features for handling any behavior by NISC. To do so,

we divide the behavior into a timed behavior that must be implemented by an

HDL and an un-timed behavior that can be implemented in software (e.g. C). The

un-timed behavior (software) accesses the timed behavior (hardware) via pre-

binding; and the timed behavior notifies the un-timed behavior about its status via

interrupt. The compilation algorithm combines all of these into cycle-accurate

RTL for final implementation. To demonstrate this concept, we illustrated how

different communication protocols can be added to NISC components.

Communication protocols typically include a cycle-accurate part which cannot be

described at behavioral level. Behavioral IP descriptions are preferred for

increasing designer’s productivity. However, IPs must be easily combined with

different communication protocols in order to facilitate IP reuse as well as

communication exploration. Since behavioral IPs are un-timed, it is impossible to

combine them with the timed description of a communication protocol. The

proposed approaches in the past either limit the supported types of

communication interfaces, or require significant language extensions. In this

thesis, we showed that by dividing the model of a communication protocol into a

synchronous part that must be timed and an asynchronous part that can be un-

timed, we can easily model and combine both IPs and communication interfaces

in NISC without limiting the interface or relying on language extensions.

 127

9.1 Future work

The NISC Technology can provide a much better way of synthesis from high level

description to RTL. What were presented in this thesis were the basic necessities for

developing a NISC compiler. The compilation techniques and the NISC toolset can be

further improved and extended in the following directions:

• The priorities in the proposed heuristic scheduling algorithm mainly focus on

performance. An interesting extension is including other parameters such as

power consumption or thermal behavior in the algorithm.

• The scheduling algorithm can be further improved to support multiple register

files or memories. These features are necessary for supporting clustered datapaths,

which can be implemented more efficiently. Alternatively instead of modifying

the scheduling algorithm, an external tool can utilize the pre-binding feature of

the compiler and directly control the partitioning of variables into different

storages.

• The NISC compiler can equally benefit from compiler optimization techniques

that are developed for VLIW processors. Adding such techniques to the compiler

as well as developing new NISC specific datapath aware code transformations can

drastically improve the final performance of the design.

• NISC potentially provides better parallelism per bit width comparing to a VLIW

machine with a similar datapath. It is interesting to compare a VLIW RTL

implementation to that of a NISC with a similar datapath. Since all VLIW

compiler optimizations are also applicable to NISC, we expect that with a

 128

comparable performance, the NISC implementation be more efficient than its

VLIW counterpart.

• In this thesis we did not explore datapath generation or customizations. Although

it can be done manually, but having automatic datapath generation and refinement

can further improve the designer’s productivity.

• An interesting research extension is to develop formal techniques that can

determine whether a given program is compilable on a given datapath. Such

techniques can provide an excellent guideline for improving the compiler.

• Embedded applications typically include a lot of operations with constant

operands. These constants can be effectively utilized for better customization. In

its current state, the NISC compiler assumes that the control word has one or

more constant fields with the same bit width. A more flexible technique can

enable more datapath customization.

• Many of the techniques developed for ASIP can be applied to NISC as well. the

algorithms that search for custom instructions, can be used to (a) add custom

functional units to a NISC datapath, and (b) modify the code and replace the

corresponding functionalities with proper pre-bound function calls.

 129

Bibliography

[1] A. Agrawala, T. Rauscher, “Foundations of Microprogramming: Architecture, Software, and

Applications”, Academic Press, 1976.

[2] A. Fauth, J. Van Praet, M. Freericks, “Describing instruction set processors using nML”, in

Proceedings of Design Automation and Test in Europe (DATE), 1995.

[3] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, A. Nicolau, “EXPRESSION: A

language for architecture exploration through compiler/simulator retargetability”, in

proceedings of Design Automation and Test in Europe (DATE), pages 485-490, 1999.

[4] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, A.Wieferink, H. Meyr, “A

Novel Methodology for the Design of Application Specific Instruction Set Processors

(ASIP) Using a Machine Description Language”, IEEE Transactions on Computer-Aided

Design, 20(11):1338–1354, 2001.

[5] A. Iyer, D. Marculescu, “Power efficiency of multiple clock, multiple voltage cores”, in

IEEE/ACM Intl. Conference on Computer-Aided Design (ICCAD), 2002.

[6] A. Orailoglu, D. Gajski, “Flow graph representation”, in Design Automation Conference

(DAC), 1986.

[7] A. Sharma, K. Compton, C. Ebeling, and S. Hauck, “Exploration of pipelined fpga

interconnect structures,” in IEEE International Symposium on Field Programmable Gate

Arrays (FPGA), 2004.

 130

[8] A. Shrivastava, E. Earlie, N. Dutt, A. Nicolau, "Operation tables for scheduling in the

presence of incomplete bypassing", in 2nd IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis (CODES+ISSS), pages 194–199, 2004.

[9] A.M. Sllame, V. Drabek, "An efficient list-based scheduling algorithm for high-level

synthesis", in Euromicro Symposium on Digital System Design, 2002.

[10] B. Gorjiara, D. Gajski, "FPGA-friendly Code Compression for Horizontal Microcoded

Custom IPs", in international Symposium on Field-Programmable Gate Arrays (FPGA),

2007.

[11] B. Gorjiara, D. Gajski, “Custom Processor Design Using NISC: A Case-Study on DCT

algorithm”, in IEEE Workshop on Embedded Systems for Real-Time Multimedia

(ESTIMEDIA), 2005.

[12] B. Gorjiara, M. Reshadi, D. Gajski, “Generic Architecture Description for Retargetable

Compilation and Synthesis of Application-Specific Pipelined IPs", in International

Conference on Computer Design (ICCD), 2006.

[13] B. Landwehr, P. Marwedel, R. Dömer, "OSCAR:Optimum Simultaneous Scheduling,

Allocation and Resource Binding Based on Integer Programming", in proceedings of Design

Automation and Test in Europe (DATE), 1994.

[14] B. Pangrle, D. Gajski, "State Synthesis and Connectivity Binding for Microarchitecture

Compilation," in International Conference on Computer-Aided Design (ICCAD), pages 210-

213, 1986.

[15] C. Hwang, Y. Hsu, Y. Lin, "Optimum and Heuristic Data Path Scheduling Under Resource

Constraints," in ACM/IEEE Design Automation Conference (DAC), pages 65-70, 1990.

[16] C. Lin and H. Zhou, “Retiming for wire pipelining in system-on-chip,” in IEEE

International Conference on Computer-Aided Design (ICCAD), 2003.

[17] C.-Y. Yeh, M. Marek-Sadowska, “Delay budgeting in sequential circuit with application on

fpga placement,” in ACM/IEEE Design Automation Conference (DAC), pp. 202–207, 2003.

 131

[18] D. Gajski, "NISC: The Ultimate Reconfigurable Component," Center for Embedded

Computer Systems (CECS), UC Irvine, Technical report TR03-28, October 1, 2003.

[19] D. Gajski, N. Dutt, A. Wu, S. Lin, "High-Level Synthesis Introduction to Chip and System

Design", Kluwer Academic Publishers, The Netherlands, 1994.

[20] D. Kim, J. Jung, S. Lee, J. Jeon, K. Choi, "Behavior-to-placed RTL synthesis with

performance-driven placement", in International Conference Computer Aided Design

(ICCAD), 2001.

[21] E. Ozer, S. Banerjia, “Unified Assign and Schedule: A New Approach to Scheduling for

Clustered Register File Microarchitectures”, in IEEE/ACM International Symposium on

Microarchitecture (MICRO-31), 1998.

[22] F. Brewer, B. Pangrle, A. Seawright, "Interconnection synthesis with geometric constraints",

in IEEE/ACM International Symposium on Microarchitecture (MICRO), pp 158-165, 1990.

[23] Forte Cynthesizer: http://www.forteds.com/

[24] Fraunhofer-Gesellschaft website: ftp://ftp.fhg.de/pub/layer3/mp3-bitstreams.tgz

[25] H. Akaboshi, “A Study on Design Support for Computer Architecture Design”, Doctoral

Thesis, Depart. of Information Systems, Kyushu Univ., Japan, January 1996.

[26] H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. V. Meerbergen, S. Note, J. Huisken,

“Architecture-Driven Synthesis Techniques for VLSI Implementation of DSP Algorithms”,

Proceedings of the IEEE, 78(2), pp. 319-335, February, 1990

[27] H. De Man, J. Rabaey, J. Vanhoof, G. Coossens, P. Six, L. Claesen, "CATHEDRAL-II

Computer-aided synthesis of digital processing systems", Computer-Aided Engineering

Journal, 1988.

[28] J. Cong, Y. Fan, Z. Zhang, “Architecture-level synthesis for automatic interconnect

pipelining,” in IEEE Design Automation Conference (DAC), pp. 602–607, 2004.

http://www.forteds.com/
ftp://ftp.fhg.de/pub/layer3/mp3-bitstreams.tgz

 132

[29] J. Cong, Y. Fan, G. Han, X. Yang, Z. Zhang, “Architectural synthesis integrated with global

placement for multi-cycle communication,” in IEEE International Conference on Computer-

Aided Design (ICCAD), pp. 536–543, 2003.

[30] J. Hennessy, D. Patterson, “Computer Architecture: A Quantitative Approach”, Morgan

Kaufmann Publishers, San Mateo, CA, 1990.

[31] J. R. Ellis, “Bulldog: A compiler for VLIW architectures”, Cambridge, MA: The MIT Press,

1986.

[32] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De Man, "A Graph Based Processor

Model for Retargetable Code Generation", in proceedings of Design Automation and Test in

Europe (DATE), 1996.

[33] J. Zhu, D. Gajski, "Soft scheduling in high level synthesis", in Design Automation

Conference (DAC), 1999.

[34] L. Singhal, E. Bozorgzadeh, “Fast Timing Closure through Interconnect Criticality Driven

Delay Relaxation", in ACM/IEEE International Conference on Computer-Aided Design

(ICCAD), 2005.

[35] M. Byatt, “Data plane processing with configurable architectures”, ARM white paper, 2003.

[36] M. Sivaraman, S. Aditya, "Cycle-time aware architecture synthesis of custom hardware

accelerators", in International Conference on Compilers, Architecture and Synthesis for

Embedded Systems (CASES), 2002.

[37] M. Xu, F. J. Kurdahi, "Layout-driven high level synthesis for FPGA based architectures", in

Design Automation and Test in Europe (DATE), pp. 446-450, 1998.

[38] M.K. Jain, M. Balakrishnan, A. Kumar, “ASIP Design Methodologies: Survey and Issues”,

In Proceedings of the Fourteenth International Conference on VLSI Design, 2001.

[39] MentorGraphics Catapult C:

http://www.mentor.com/products/c-based_design/catapult_c_synthesis/index.cfm

[40] MiBench benchmark: http://www.eecs.umich.edu/mibench/

http://www.mentor.com/products/c-based_design/catapult_c_synthesis/index.cfm
http://www.eecs.umich.edu/mibench/

 133

[41] MIPS32® M4K™ Core, http://www.mips.com

[42] MPEG Audio Decoder: http://www.underbit.com/products/mad/

[43] N. Ahmed, T. Natarajan, K.R. Rao, “Discrete Cosine Transform”, in IEEE Trans. On

Computers, vol. C- 23, 1974.

[44] N. Berry, B.M. Pangrle, "SCHALLOC: an algorithm for simultaneous scheduling &

connectivity binding in a datapath synthesis system", in Design Automation Conference

(DAC), 1990.

[45] N. Clark, H. Zhong, K. Fan, S. Mahlke, K. Flautner, K. Van Nieuwenhove, “OptimoDE:

Programmable Accelerator Engines Through Retargetable Customization”, Hot Chips, 2004.

[46] N. Park, A. Parker, "Sehwa: A Software Package for Synthesis of Pipelines from Behavioral

Specifications," in IEEE Transactions on Computer Aided Design, pp. 356-370, 1988.

[47] NISC Technology website http://www.cecs.uci.edu/~nisc/.

[48] O. Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid, H. Meyr, M. Steinert, G. Braun,

A. Nohl, "RTL Processor Synthesis for Architecture Exploration and Implementation", in

Design Automation and Test in Europe (DATE), 2004.

[49] P. G. Paulin, J. Knight, "Algorithms for High-Level Synthesis", in IEEE Design & Test of

Computers, Vol. 6, No. 6, pp. 18-31, Dec. 1989.

[50] P. G. Paulin, J. P. Knight, "Force-Directed Scheduling for the Behavioral Synthesis of

ASIC’s", IEEE Transactions on Computer-Aided Design, Vol. 8, No. 6, pp. 661-679, 1989.

[51] P. Marwdedel, “The MIMOLA Design System: Tools for the Design of Digital Processors”,

in Design Automation Conference (DAC), 1984.

[52] P. Mishra, N. Dutt, “Architecture Description Languages for Programmable Embedded

Systems”, in IEE Proc. on Computers and Digital Techniques (CDT), Special issue on

Embedded Microelectronic Systems: Status and Trends, vol. 152, no 3, 2005.

[53] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven Exploration of Pipelined Embedded

Processors”, in International Conference on VLSI Design, 2004.

http://www.mips.com
http://www.underbit.com/products/mad/
http://www.cecs.uci.edu/~nisc/

 134

[54] P. Paulin, J. Knight, “Scheduling and binding algorithms for high-level synthesis”, In

ACM/IEEE Design Automation Conference (DAC), 1989.

[55] R. Camposano, “Path-Based Scheduling for Synthesis”, in IEEE Transactions on Computer-

Aided Design, Vol. 10, No. 1, pp. 85-93, Jan. 1991.

[56] R. Camposano, “From Behavior to Structure: High-levelSynthesis”, IEEE Design & Test of

Computers, 1990.

[57] R. E. Bryant, “Graph-based Algorithms for Boolean Function Manipulation”, in IEEE Trans.

on Computers, 24.3, pp. 293-318, 1992.

[58] R. Leupers, P. Marwedel, “Retargetable Code Generation based on Structural Processor

Descriptions”, in Design Automation for Embedded Systems, vol. 3, no. 1, 1998.

[59] R. Leupers, P. Marwedel, “Retargetable Generation of Code Selectors from HDL Processor

Models”, in Design Automation and Test in Europe (DATE), 1997.

[60] R. Nair, C. L. Berman, P. S. Hauge, E. J. Yoffa, “Generation of performance constraints for

layout”, in IEEE Trans. Computer-Aided Design, vol. 8, no. 8, pp. 860–874, Aug. 1989.

[61] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cronquist and M. Sivaraman,

“PICO-NPA: High-Level Synthesis of Nonprogrammable Hardware Accelerators”, in

Journal of VLSI Signal Processing, 31(2):127-142, 2002.

[62] Robert H. Sperry, David C. Farden, "A Microprogrammed Signal Processor", in IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 6,

pp. 579- 582, 1981.

[63] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neumann, D. Voggenauer,

“The MIMOLA Language - Version 4.1. Technical Report”, Computer Science Dpt.,

University of Dortmund, Sept. 1994.

[64] S. Ghiasi, E. Bozorgzadeh, S. Choudhary, M. Sarrafzadeh, “Unified theory of timing budget

management”, in Proc. IEEE International Conference on Computer-Aided Design

(ICCAD), 2004.

 135

[65] S. Govindarajan, R. Vemuri, "Cone-Based Clustering Heuristic for List-Scheduling

Algorithms", in Proceedings of European Design & Test Conference (ED&TC), 1997.

[66] S. Habib, “Microprogramming and Firmware Engineering Methods”, John Wiley & Sons,

Inc., 1988.

[67] S. Heath, “Embedded Systems Design”, Oxford: Newnes, 2003.

[68] S. Weber and K. Keutzer, “Using Minimal Minterms to Represent Programmability”, in

International Symposium on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), September 2005.

[69] S. Y. Ohm, F. J. Kurdahi, N. Dutt, M. Xu, "A comprehensive estimation technique for high-

level synthesis", in International Symposium on Systems Synthesis, 1995.

[70] Tensilica Inc. http://www.tenisilica.com

[71] W. Qin, S. Malik, “Architecture Description Languages for Retargetable Compilation”, in

The Compiler Design Handbook: Optimizations & Machine Code Generation. Y. N. Srikant

and Priti Shankar, CRC Press, 2002.

[72] W.E. Dougherty, D.E. Thomas, "Unifying behavioral synthesis and physical design", in

IEEE/ACM Design Automation Conference (DAC), 2000.

[73] XML Schema: http://www.w3.org/XML/Schema/

[74] XML: http://www.w3.org/XML/

http://www.tenisilica.com
http://www.w3.org/XML/Schema/
http://www.w3.org/XML/

