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Due to the productivity gain of using software in the design of embedded systems, 

processors are increasingly used in these systems. Embedded processors often run only 

one or a few applications in the life-time of the system. Therefore, they can be 

customized for the target applications and significantly improve the quality of the 

embedded system in terms of cost or other constraints such as performance, and power 

consumption. Instruction-based architectures limit the customizations because: (a) 

hardware designer is limited by instruction coding, size and complexity of the decoder; 

(b) compilers can support certain class of instructions and hence instructions cannot be 

very complex; and (c) manually updating compilers to incorporate the custom 
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instructions is not practical and developing compilers that automatically utilize hardware 

customizations through new custom instructions is very complex. 

On the other hand using technologies such as High Level Synthesis (HLS) is not 

always possible because the traditional HLS techniques can only support relatively small 

applications. Also they do not give enough control to the designer over the quality of 

results. Additionally, the main interdependent subtasks of HLS, i.e. resource allocation, 

operation scheduling, and resource binding, are already too complex themselves and 

hence adding new constrains such as design for manufacturability to them is not practical. 

In this thesis we present a new design approach called NISC (No-Instruction-Set-

Computer) Technology. In NISC, the datapath and controller are generated in two 

different phases. First the datapath is generated or selected from a database based on the 

application behavior. At the core of NISC technology, there is a cycle-accurate compiler 

that maps a given application directly on a given datapath and generates the control 

words (CWs) that control the datapath resources in every clock cycle. The NISC 

architecture style is similar to the old nanocode machines. However, instead of using 

nanocodes inside the process for implementing the microcodes and in turn instructions, in 

NISC the nanocode (CWs) are directly used to program the datapath.  

NISC simplifies customization and allows designer to fully control design quality. 

NISC simplifies ASIP (Application-Specific-Instruction-Processor) approach by 

removing the complex task of finding and designing “most profitable” custom 

instructions. In NISC only the datapath needs to be specified and NISC compiler 

generates code as if each basic block of the program is executed with one custom 

instruction. On the other hand, NISC improves resource constrained HLS techniques by 
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adding the connectivity constraints, on top of the traditional resource constraints, into 

synthesis process. This enables the designer to control every thing in datapath including 

wires, which are becoming increasingly more critical in newer technologies.  

To realize the NISC Technology design flow, several challenging categories of 

problems must be solved. Mainly we need: 

1. Techniques for efficiently designing and customizing a datapath for an application 

2. Techniques for efficiently compiling any application on any given datapath 

3. Techniques for efficiently synthesizing a controller from the output of compiler 

and then generating synthesizable code for different target implementations. 

In this thesis we focus on the compilation problems to enable practical use of NISC 

IPs in a system. We mainly address: modeling of datapath for compilation, scheduling 

algorithm for compilation, interrupt support in the statically-scheduled pipelined NISC 

components, and low-level programming in C language in the absence of assembly. 

Finally we show how different communication interfaces and protocols can be added and 

used in a NISC component. At the end, we present results that show efficient and fast 

compiler as well as significant quality improvements for presented experiments. A 

working compiler incorporating all of the solutions in this thesis, along with the 

experiments and other NISC toolsets is available for public use from NISC website 

http://www.cecs.uci.edu/~nisc/. An online version of the tools can be also directly 

accessed at this website.  

http://www.cecs.uci.edu/~nisc/


 

1 

 

Chapter 1. Introduction 

Rising const and complexity of systems on one hand, and more constrained 

requirements on the other hand, demand design approaches that not only increase the 

productivity of designers but also provide better ways of controlling and improving the 

quality of final results. An obvious way of increasing productivity is raising the 

abstraction level. As a result, designers are increasingly looking into implementing their 

algorithms from a high level description (such as C or other high level languages) rather 

than describing them directly at RTL (Register Transfer Level). When using a high level 

description of an algorithm, one of the obvious implementation choices is to use a 

processor and compile the algorithm to the instruction-set of that processor. This provides 

tremendous productivity but does not allow the designer to optimize quality metrics (such 

as performance, area, power …) the way it is possible with a RTL design. On the other 

hand, manual RTL implementation can improve quality but at the cost of increased 

design time and hence reduced productivity. 

Ideally, the designer must be able to describe all blocks of the design in C, for 

example, and be able to achieve the desired quality and meet the required constraints. 

Two different technologies, High Level Synthesis (HLS) and Application Specific 

Instruction-set Processors (ASIP), have tried to achieve this goal (Figure  1.1). HLS tries 
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to improve the productivity of RTL design by directly converting high level C description 

in to an RTL Hardware Description Language (HDL). However, HLS techniques offer a 

one-direction path from application (C code) to implementation (RTL). They also 

typically can only support a sub-set of language features and can handle small application 

sizes. Additionally, the designer cannot directly correlate the effect of application 

modifications to final implementation quality metrics such as area, power, clock 

frequency, routable layout …. Therefore, the designer can only rely on try and error and 

guess work for improving the quality. Because of this major drawback, result quality of 

HLS tools is significantly lower than manual RTL. On the other hand in ASIP, a base-

processor is “extended” to support application-specific custom instructions. Finding 

proper custom instructions is a very challenging and time-consuming task. Additionally, 

since the base-processor is always extended, the designer must always pay for all of the 

resources of the base-processor even if the application does not use all of them. As a 

result, today still designers have to choose between high productivity and high quality but 

cannot achieve both simultaneously. 

 

Pr
od

uc
tiv

ity
 

Design Quality 

ASIP 

RTL 

Processor 
(software) 

HLS 

 
Figure  1.1. Designer Productivity vs. Design Quality 
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Another problem with ASIP and HLS is the discontinuity in the spectrum of design 

complexities that the two technologies can be applied to. In other words, if the designer 

has a mid-complexity design that can be implemented by both ASIP and HLS, then to try 

both technologies, the designer must use two distinct set of tools, skills, and design flows. 

This practical limitation prevents efficient design space exploration. Typically, the 

building blocks of an application have different levels of criticality in the overall quality. 

For example some blocks may consume more power or area than others; or the overall 

performance of the design may depend on some blocks more than others. The designer 

would want to spend more time on optimizing more critical blocks (depicted in Figure 

 1.2). However, with the current technologies, the designer should first decide upfront 

with blocks are implemented in software and which blocks are implemented in RTL. 

Then proportionally, the same amount of time should be spent on all RTL blocks, and 

similar degree of quality loss will appear in software blocks. If in later stages of design, a 

block must be moved from one domain (e.g. software) to another (e.g. hardware), then all 

developments efforts on that block will be inapplicable in the new domain. 

Time spend on optimization 

Quality 

Block of application 

More critical 

Less critical 

 
Figure  1.2. Desired proportion between optimization effort and criticality 
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In this thesis, I present an alternative design approach called No-Instruction-Set-

Computer (NISC) Technology to address the above problems. In the rest of this chapter, I 

first explain the limitations of ASIP and HLS in more details and then present an 

overview of the NISC technology and the corresponding design approach.  Chapter 2 

describes the NISC architecture and  design flow in more details.  Chapter 3 shows how 

we model NISC and  Chapter 4 presents the compilation algorithm.  Chapter 5 and  Chapter 

6 explain how low-level programming and interrupt are supported in NISC while  Chapter 

7 shows how to use these features handle timed behaviors and add different 

communication interfaces to NISC. Several experimental results are presented in  Chapter 

8.  Chapter 9 concludes the thesis and presents some future directions for extending the 

work of this thesis. 

1.1 From High Level Synthesis (HLS) to NISC 

Traditional High Level Synthesis (HLS) techniques  [19] [56] [26] [54] [14] [15] [46]  

take an abstract behavioral description and generate a register-transfer-level (RTL) 

datapath and controller. Traditional HLS includes three main tasks: resource allocation, 

operation scheduling, and resource binding. These tasks are interdependent and different 

researchers have suggested different heuristics that perform then in different orders. 

Typically, first operations are scheduled based on some resource constraints, then proper 

number of functional units and storages are allocated, and finally operations are bound to 

functional units and variables are bound to storages. Afterwards, the datapath is generated 

by connecting storages and functional units to ensure that in each cycle the scheduled 

operation has access to corresponding storages for reading its input operands and writing 

its result. While most HLS techniques use list-based scheduling  [19] and perform 
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allocation and binding separately, some approach, such as  [13]  and  [44], try to perform 

scheduling, allocation and binding simultaneously using integer linear programming or 

branch-and-bound algorithms. Although they may achieve optimal results, complexity 

restrains the practical applicability of such approaches. 

The generated datapath is in form of a netlist and must be converted to layout for the 

final physical implementation. Lack of access to layout information limits the accuracy 

and efficacy of design decisions (or optimizations) during synthesis. For example, 

applying interconnect pipelining technique is not easy during scheduling, because wire 

information is not available yet. Many researchers ( [37] [69] [20] [33] [72] [22]) have also 

attempted to incorporate layout information in the synthesis process, especially in 

scheduling. However, similar to traditional HLS, these approaches generate the datapath 

after scheduling and therefore they can only predict or estimate layout information during 

scheduling. However, usually these techniques are inaccurate and are at best only 

applicable to a specific manufacturing technology. It is also possible to refine the design 

after generating the layout. In this case, since the physical parameters can be calculated or 

estimated from the generated layout, the results will be more accurate. However, possible 

optimizations that use these physical properties have very limited applicability. This is 

because they are applied to a generated design after scheduling and the optimizations 

must always maintain the validity of the schedule. For example, applying interconnect 

pipelining is only possible if the affected states have enough slack time so that schedule 

can be modified locally while maintaining its validity  [34] [64] [60] [17] [7] [16] [29] [28]. In 

other words, aggressive and efficient optimizations are limited after generating the 

datapath because they might invalidate the schedule.  
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On the other hand, to give the designer more control over quality of generated 

results, resource constrained approaches can incorporate limitations on the type and 

number of resources that are allowed in the design and are given as input to the system. 

In some cases  [15] [27] number and type of multiplexers and buses can also be specified. 

But the designer cannot control input how components are connected as a constraint to 

these systems. No HLS technique considers interconnects as constrain.  

In the newer technologies, wires contribute significantly more so the overall delay, 

power consumption, area, and complexity of the design. The wire parameters directly 

depend on the geometry of the layout. The layout information is also needed for Design-

For-Manufacturability (DFM). The growing complexity of new manufacturing 

technologies demands synthesis techniques that support DFM. However, the 

interdependent scheduling, allocation and binding tasks in HLS are too complex by 

themselves and adding DFM and accurate layout estimations will add another degree of 

complexity to the design process. This increasing complexity requires a design flow that 

provides a practical separation of concerns and supports more aggressive optimizations 

based on accurate information. 

If we consider the progress of resource-constrained HLS, we can see that researchers 

have always tried to improve the quality of results by increasing the designer’s control 

over how the final datapath should look like. In the past the effect of wires on the quality 

was negligible compared to that of logic resources (i.e. functional units, storages, 

multiplexers, and some how busses). In the newer technologies, it is necessary to 

consider both resource and connectivity constraints for efficient and high quality 

synthesis. But what does connectivity-constrained means? It means in addition to the 
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number and type of resources, the way these resources are connected to each other is also 

inputted to the synthesis. In other words, the datapath is specified, and the synthesis tool 

must map the application (C code) to the given datapath and generate the controller. This 

brings us to the NISC Technology. Figure  1.3 shows a design flow in which generation of 

datapath and controller are completely separated. This separation has several positive 

effects including: 

• It enables iterative design and quality improvements through refinement. 

• DFM and other layout optimizations can be handled independently. 

• Accurate layout information can be used by scheduler and other synthesis phases. 

 

datapath 
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generation 
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Figure  1.3. Complete separation of datapath and controller in the design flow 

In the design flow of Figure  1.3, first the datapath is designed and remains fixed 

during compilation. Then the controller is generated by mapping (scheduling and 

binding) the application on the given datapath using a new cycle-accurate compiler. This 

compiler combines HLS, Application Specific Instruction set Processor (ASIP) design, 

and retargetable compiler techniques. 

In some aspects, the proposed design flow is similar to the compilation of 

applications for processors because in both cases the datapath is fixed during the mapping 

process. However, traditional compilers rely on instruction-set (or microcode) to abstract 

out the functionality of processor’s datapath and assume that the processor translates such 
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abstractions to proper control signals. In our approach, the cycle-accurate compiler 

directly maps the application on the given datapath by (1) binding operations, storages, 

and interconnects, and (2) scheduling the control signal values of datapath components in 

proper clock cycles. Therefore, it has complete fine-grain control over datapath and can 

achieve better parallelism and resource utilization. Since we do not use predefined 

instruction semantics, we call the result architecture No-Instruction-Set-Computer 

(NISC). In this thesis, I present the solutions to some of the challenging problems 

involved in realization of such cycle-accurate compiler. 

1.2 From ASIP to NISC 

Performance of applications can be improved by exploiting their inherent horizontal 

and vertical parallelism. Horizontal parallelism occurs when multiple independent 

operations can be executed simultaneously. Vertical parallelism occurs when different 

stages of a sequence of operations can be overlapped. In processors, horizontal 

parallelism is utilized by having multiple functional units that run in parallel and vertical 

parallelism is utilized through pipelining. 

Currently, in VLIW processors, the compiler controls the schedule of parallel 

independent operations (horizontal control). However, in all processors, the compiler has 

no control over the flow of instructions in the pipeline (vertical control). Therefore, the 

vertical parallelism of the program may not be efficiently utilized. In Application 

Specific Instruction-set Processors (ASIPs)  [38], structure of pipeline can be customized 

for an application through custom instructions.  

In ASIPs, functionality and structure of datapath can be customized for an 

application through custom instructions. At run time, each custom instruction is decoded 
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and executed by the corresponding custom hardware. Due to practical constrains on size 

and complexity of instruction decoder and custom hardware, only few custom 

instructions can be actually implemented in ASIPs. Therefore, only the most frequent or 

beneficial custom instructions are selected and implemented. Implementing these custom 

instructions requires: (a) designing custom hardware for each instruction, (b) 

implementing an efficient instruction decoder, and (c) incorporating the new instructions 

in the compiler. These steps are complex and usually time consuming tasks that require 

special expertise. Furthermore, in all processors, no matter how many times an 

instruction is executed, it always goes through an instruction decoder. The instruction 

decoder consumes power, area, and complicates the controller as well. 

 Typically, ASIPs rely on retargetable compilers that automatically incorporate the 

custom instructions into the compiler by using a processor description captured in an 

Architecture Description Language (ADL)  [52] [71]. All retargetable compilers rely on 

high level instruction abstractions to indirectly control the datapath of the processor. 

They always assume that the processor already has a controller that translates the 

instructions into proper control signals for the datapath components. In behavioral ADLs, 

the processor is described in terms the behavior of its instructions. These ADLs are 

usually very lengthy because they have to capture all possible configurations of 

instructions. Furthermore, since no structural information is available in the ADL, the 

quality of automatically generated RTL (if any) for the processor is very low. Structural 

ADLs try to improve the quality of generated RTL by capturing the controller, instruction 

decoder and datapath of the processor. Capturing the instruction decoder significantly 

complicates these ADLs. Additionally, extracting the high level instruction behaviors 
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from these ADLs for the compiler is very complex and can only be done for limited 

architectural features.  

Getting a fixed architecture model as input is a common assumption in retargetable 

compilers, mostly used for ASIPs. But usually in these compilers the architecture model 

is described in terms of instructions, which is a much higher level of abstraction than the 

structural details of the architecture. UDL/I  [25] is an HDL that captures the architecture 

at the Register-Transfer (RT)-level. A target specific compiler can be generated based on 

the instruction set extracted from the UDL/I description. However, UDL/I cannot support 

architecture with any instruction level parallelism. Compilers such as RECORD  [58] [59] 

and CHESS  [32] use a structural description of architecture but still need to extract the 

higher level instruction information for using in the compiler. The RECORD compiler 

extracts behavioral model of instructions from MIMOLA HDL  [51] [63]. They assume a 

Horizontal Microcode Architecture (HMA)  [66] with single cycle operation. They 

process the structure of the datapath from destination storages towards source storages to 

extract valid register transfers (RTs). After analyzing the controller, they reject illegal 

RTs that do not correspond to an instruction, and use the remaining RTs in the compiler. 

This approach was suitable for architecture implementation but had two drawbacks: (a) 

they did not support pipelined datapaths or multi-cycle units, and (b) the designer had to 

describe the controller explicitly. The CHESS compiler uses the nML language  [2] to 

extract the instruction-set graph (ISG) that captures structural resources in the 

architecture that are used by each instruction. In both of these approaches, (a) the 

controller and instruction decoder must be explicitly specified in the input format, and (b) 

the compiler must analyze the controller to extract the instruction behaviors. Hence, not 
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only the input descriptions of these approaches are very complex, it is very difficult to 

extract the instructions as well. As a result, supported architectural features are limited. 

Similar to MIMOLA, the TIPI (Tiny Instruction-set Processors and Interconnect)  [68] 

targets statically-scheduled HMAs with single-cycle instructions. The main difference is 

that instead of relying on specification of the controller, the TIPI uses the speciation of 

non-deterministic atomic actions on architectural state and outputs. While MIMOLA uses 

binary decision diagrams (BDDs)  [57] to extract the valid instructions, in TIPI they 

extract the instruction-set as a set of operations and conflict table from the 

programmability constraint descriptions using Boolean satisfiability (SAT) algorithm. 

Cycle-accurate simulator and HDL generation from TIPI has been reported, but it does 

not have a compiler and all programming must be done manually. Retargetable 

approaches such as LISA  [4] [48] and EXPRESSION  [3] [53] use a behavioral instruction 

description mixed with structural architecture information and mainly focus on code 

generation and simulation. Absence of implementation details in the input description of 

these techniques degrades the quality of their recently added HDL generation. Tensilica 

 [70] has a set of extensible processors and uses a proprietary language called TIE to 

describe the new custom instructions. This language is only for generating the RTL of the 

custom instruction rather than automatically detecting the usage of the custom 

instructions in the program by compiler. The programmer should explicitly use the 

custom instructions in the program in order to utilize them. 

Before RISC processors become popular, microcode processors  [1] [66] were 

extensively studied for several years. Microcodes are mainly used inside processors for 

implementing complex instructions or for controlling programmable coprocessors such as 
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PICO  [36] [61] and ARM OptimoDE  [45],  [35]. In many processors, the instruction does 

not operate directly on the internal resources, and instead is decoded to a sequence of 

microcodes. In some machines (Motorola 68000,  [62]) the microcode instructions are 

also translated to a sequence of nanocode commands, which are in fact the Control 

Words (CWs) directly controlling the datapath resources in every cycle  [30] [67]. In such 

machines, microcode and nanocode programs are manually developed and stored in a 

ROM in the processor.  

Instead of hard-coding the nanocode into the processor, if we expose them for 

programming the datapath, then we will have the most flexible way of controlling the 

resources of datapath and also support far more complex datapaths than what HLS 

techniques can generate. Nanocode exposes all structural details of datapath, therefore 

manual programming at nanocode level is not practical, and also the compilation 

techniques must be upgraded to deal with all of the low-level structural details of the 

datapath. Furthermore, if we develop such a compiler in a way that datapath structure and 

timing details can be described and used as input to the compiler, then we can have a 

design flow in which datapath is specified and application is mapped directly on the 

datapath. This idea leads us to the NISC Technology and the cycle-accurate compiler at 

the core of it. 

The NISC cycle-accurate compiler generates code as if each basic block of program 

is executed with one custom instruction. A basic block is a sequence of operations in a 

program that are always executed together. Ideally, for each basic block we should have 

one instruction that reads the inputs of basic block from a storage (e.g. register file) and 

computes the outputs of basic block and stores them back. The large number of basic 



 13 

blocks in a typical program prevents us from using an ASIP approach to achieve the 

above goal. To solve this problem, in NISC instruction decoding is moved from hardware 

to the compiler. In ASIP, after reading the binary of a custom instruction from memory, it 

is decoded into a set of control words (CWs) that control the corresponding custom 

datapath and executes the custom functionality. Instead of having too many custom 

instructions and then relying on a large instruction decoder to generate CWs in hardware; 

in NISC the CWs are generated in compiler by directly mapping each basic block onto 

the custom datapath. Therefore, the compiler can construct unlimited number of custom 

functionalities utilizing both horizontal and vertical parallelism of the input program. If 

the datapath is designed to improve the execution of certain portions of program, the 

NISC compiler will automatically utilize it. Since the compiler is no longer limited by the 

fixed semantics of instructions, it can fully exploit datapath capabilities and achieve 

better parallelism and resource utilization. 

1.3 NISC Technology 

It was explained in the beginning of chapter that there is a gap between designer 

productivity and design quality that can be achieved with current technologies. There is 

also a disconnect in the spectrum of design complexities that the ASIP and HLS 

technologies can be used for. The goal of NISC technology is to fill this gap and provide 

a technology that is applicable across a wide range of design complexities (Figure  1.4).  

The core idea in NISC is to specify the datapath and map the application directly on 

the datapath to generate the controller. In contrast to ASIP, the complexity of datapath 

and final design can be reduced and customized to match exactly the requirements of the 

application. In HLS, designer needs guess work, implicit tricks, or coding styles in the 



 14 

input source code in order to control non-functional parameters such as area, power, and 

clock frequency. Such non-functional parameters cannot be explicitly controlled in the 

high level C code which only captures the functionality of the design. Instead, in NISC, 

the functionality is captured in standard ANSI C (or potentially other similar un-timed 

high level languages), and other non-functional parameters are captures and controlled 

via the datapath description.  
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Figure  1.4. NISC: filling the gap between designer productivity vs. design quality 

As we mentioned in Section  1.2, NISC architecture style can look like a processor 

except that instruction decoder is removed and its job is moved from hardware to 

compiler. Over the past years, the trend of processor design has been to give compiler 

more control over the processor. This is more evident in transition from CISC (Complex 

Instruction Set Computer) to RISC (Reduced Instruction Set Computer) and from 

Superscalar to VLIW (Very Long Instruction Word) processors. While in CISC complex 

functionalities could be executed with complex instructions; in RISC the compiler uses 

simpler instructions to execute those complex functionalities in software. Similarly, while 

in RISC and superscalar machines operations were scheduled in hardware, in VLIW 

machines schedule of operations is determined statically by compiler in software. 

Increasing the role of compiler and its control over the processor has several benefits: 
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• The compiler can look at the entire program and hence has a much larger 

observation window than what can be achieved in hardware. Therefore, much 

better analysis can be done in compiler than hardware.  

• More complex algorithms (such as instruction scheduling, register renaming) can 

be implemented in compiler than in hardware. This is because first, the compiler 

is not limited by the die size and other chip resources; and second, compiler’s 

execution time does not impact the application execution time. In other words, 

compiler runs at design time, while hardware algorithms run during application 

execution. 

• The more functionality we move from hardware to compiler, the simpler the 

hardware becomes, and the less the runtime overhead is. This has a direct effect 

on area and power consumption of the circuit.  

In No-Instruction-Set-Computer (NISC) technology, compiler not only constructs 

functionalities and schedules operations, it is also responsible to decode operations into 

control words that control the hardware and execute the program. In NISC, the compiler 

determines both the schedule of parallel independent operations (horizontal parallelism), 

and the logical flow of sequential operations in the pipeline (vertical parallelism). The 

compiler generates the control words (CWs) that must be applied to the datapath 

components at run time in every cycle. In other words, in NISC, all of the major tasks of 

a typical processor controller (i.e. instruction decoding, dependency analysis, and 

instruction scheduling) are done by the compiler statically. Since, in NISC, the compiler 

decides what the datapath should do at every clock cycle, we call it a cycle-accurate 

compiler. The NISC cycle-accurate compiler compiles the application directly to the 
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datapath. It can achieve better parallelism and resource utilization than conventional 

instruction-set based compilers.  

NISC technology can also help low-power application-specific processor design, 

because: (a) the compiler-oriented control of the datapath, inherently minimizes the need 

for runtime hardware-based control, and therefore, reduces the overall power 

consumption of the design; (b) NISC technology allows datapath customizations to 

reduce total number of cycles and therefore total energy consumption. The extra slack 

time can also be used for voltage and frequency scaling, which result in more savings; 

and (c) NISC does not limit the number of custom functionalities that can be 

implemented on its datapath because instead of using custom instructions and then 

relying on the decoder in hardware to generate the control signals, in NISC the compiler 

generates the control signal values.  

Of course, moving functionality from hardware to compiler means that the compiler 

becomes more complex and new problems and challenges must be solved. In the rest of 

this thesis, I present the main new challenges in a compiler for NISC Technology and 

present my solutions. 

1.4 Contributions of this thesis 

The NISC idea was first introduced as the single, necessary, and sufficient 

computation component for design of systems-on-chip  [18]. In NISC design approach, 

the datapath is specified and the controller is generated by mapping the application 

directly on the datapath without using any instruction-set. To realize the NISC idea, 

several challenging categories of problems must be solved. Mainly we need: 
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• Techniques for efficiently designing and customizing a datapath for an application 

• Techniques for efficiently compiling any application on any given datapath 

• Techniques for efficiently synthesizing a controller from the output of compiler 

and then generating synthesizable code for different target implementations. 

In this thesis I mainly focus on clarifying the details of the NISC architecture as well 

as its compilation problems. The goal of my research was to clearly define what goes into 

the hardware and what must be done by compiler, and then implement a practical 

compiler that runs fast enough while supporting the features necessary for designing a 

NISC component to be used in a system. Accordingly, I have identified and addressed the 

following problems: 

1. I have defined what exactly the execution semantics of NISC architecture is, how 

to model the architecture, what information must be captured in the model to 

enable compilation, and how the control bits are organized in the control word. 

2. Once we have the model, in addition to the standard compilation techniques, we 

also new compilation algorithm that can incorporate all low-level structural 

details of the datapath. I present a scheduling and binding algorithm that supports 

operation parallelism, pipelined/multi-cycle operations, operation chaining, and 

heterogeneous pipeline and data forwarding.  

3. It is important to enable the designer to access some low-level resources directly 

from the C code. This is needed for example for accessing specific registers or 

ports in the NISC datapath, or accessing functional units whose functionality 

cannot be represented by any of the operators in the C (or other high level) 

language. To solve this problem in processors, programmers use assembly 
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instructions. However, NISC does not have instructions and hence cannot have 

assembly. Therefore, I present an alternative mechanism that allows low-level 

programming in the C language. 

4. A NISC must support interrupt. However, since NISC is a statically-scheduled 

nanocode machine, it cannot be interrupted arbitrarily. I propose a safe and low-

overhead mechanism for implementing the interrupts. 

5. To use NISC in a system, it should be able to communicate with other 

components and communication protocols. For some protocols, NISC must 

adhere to a cycle-accurate and timed behavior. Since C and other high level 

languages are un-timed, we need to find a way to support timed behavior without 

requiring any language extensions. I show how the presented techniques in this 

thesis are sufficient enough for describing different communication protocols. 

As the result of this PhD thesis a working cycle-accurate NISC compiler has been 

developed. However, to actually use the NISC technology and evaluate its different 

aspect several other tools in addition to the compiler were necessary. There tools have 

been developed through collaboration of several people and are now available for 

download from NISC Website  [47]. Furthermore, the development of each experiment 

and benchmark, from converting the standard C code to an embedded implementation 

down to implementing the final results in hardware, involved several people. Some of the 

reported results in this thesis, such as area and clock frequency numbers, are not a direct 

output of the compiler but are included form other people’s work in order to provide 

more accurate analysis and comparison. 
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Chapter 2. NISC 
Architecture 

A NISC architecture is composed of a datapath and a controller. The datapath of 

NISC can be simple or as complex as datapath of a processor. The controller drives the 

control signals of the datapath components in each clock cycle. These control values are 

generated by the NISC compiler. These values are either stored in a memory or generated 

via logic in the controller. Both the controller and the datapath can be pipelined. Figure 

 2.1 shows a sample NISC architecture with a pipelined datapath that has partial data 

forwarding, multi-cycle and pipelined units, as well as data memory and register file. 

 
Figure  2.1. A sample NISC architecture 
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The controller has a fixed template and implements one FSM produced by compiler. 

The FSM must be as simple as possible to provide maximum flexibility and control over 

datapath for the compiler. Changes in the datapath are automatically incorporated by the 

compiler, but changes in the controller may require changing the compiler itself. As we 

mentioned in  Chapter 1, the goal of NISC is to enable customizations to exactly match 

the architecture to the requirements of the application. Therefore the architecture features 

must be controlled by adding/removing components to/from datapath, and the controller 

must be kept as simple as possible without imposing any minimum complexity overhead. 

 
Figure  2.2. A typical NISC controller 

For small size programs, the control values can be generated via logic in the 

controller, for example using flip-flops, etc. For larger applications, or for enabling 
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reprogrammability, a memory based controller can be used which stores the control 

words in some sort of memory. Figure  2.2 shows a typical NISC controller which is 

composed of a Program Counter (PC) register, an Address Generator (AG), a Control 

Memory (CMem), and a Link Register (LR). In each cycle, a new control word appears 

on the CW port of the controller. A control word contains one or more constant fields that 

are used as constants in the datapath or as offset for a jump. The controller itself has some 

control bits that come from CW. For example in Figure  2.2, control bits isJump, 

isConditional, isDirect, and isCall come from CW. The LR register stores the return 

address when executing a function call. In the prolog of every function, the LR value is 

read and pushed on the stack, and then in the epilog of that function, the return address is 

popped from stack and passed as a direct jump (i.e. isJump=1 and isDirect=1). 

d=(a+b)×c 
Assume:  
    a=RF(1), b=RF(2), c=RF(3), d=RF(4) 

Cycle CW 
1 r1=RF(1); r2=RF(2); 
2 r4=ALU(+,r1, r2); r5=RF(3); 
3 r6=MUL(*,r4, r5); 
4 RF(4)=r6; 
  

Figure  2.3. Statically scheduled control words 

To execute the program on a given datapath, the corresponding control words are 

statically scheduled at compile time. Figure  2.3 shows the scheduled control words for 

executing a simple expression on the given datapath. The actual control words contain 

control bits that configure the corresponding resources to do the required task, e.g. set the 
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load of a register to load a new value in a certain cycle; or select a certain operation from 

a functional unit in a certain cycle. 

 In presence of controller pipelining (e.g. PC and Status registers in Figure  2.2 and 

Figure  2.1), the compiler should also make sure that the branch delay is considered 

correctly and is filled with other independent operations. Detail of the compilation 

algorithm is presented in Chapter  Chapter 4. 
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Figure  2.4. NISC design flow 

Figure  2.4 shows the design flow for designing a custom NISC for a given 

application. In NISC, the controller is generated after compiling the application on a 

given datapath. Therefore both the application and the datapath description are 

considered input to the NISC cycle-accurate compiler. The datapath can be generated 
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(allocated) using different techniques. For example, it can be an IP, reused form other 

designs, or specified by the designer. The datapath can also be generated automatically 

based on the application behavior. The datapath is captured in the GNR (Generic Netlist 

Representation) format  [12] which describes the datapath as a netlist of components and 

assigns different attributes to each component. A component in datapath can be a register, 

register-file, bus, multiplexer, functional unit, memory etc. The functionalities of 

components are associated with timing information of corresponding control values. 

The GNR description of the datapath and the high level description of the application 

(e.g. C code) are then given as input to the NISC compiler. The NISC compiler, maps the 

application directly on the given datapath and generates a Finite State Machine (FSM) 

that determines the behavior of datapath in each clock cycle. The NISC compiler applies 

a combination of traditional compilation algorithms as well as HLS techniques, 

specifically resource scheduling and resource binding. At the end, the complier generates 

the contents of data memory (if any) and also uses the FSM to generate the stream of 

control values. The RTL generator, first synthesizes a controller from the output of 

compiler, and then uses the datapath information to generate the final synthesizable RTL 

design (described in Verilog). This RTL is then used for simulation (validation) and 

synthesis (implementation). After synthesis and Placement and Routing (PAR), the 

accurate timing, power, and area information can be extracted form the layout and used 

for further datapath refinement. For example, the user may add functional units and 

pipeline registers, or change the bit-width of the components and observe the effect of 

modifications on precision of the computation, number of cycles, clock period, power, 

and area. In NISC, there is no need to design the instruction-set because the compiler 
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automatically analyzes the datapath and extracts possible operations and branch delay. 

Therefore, the designer can refine the design very fast.  

As a unique feature of the NISC design flow in Figure  2.4 is that it enables the 

designer to iteratively refine and improve the results (as depicted in Figure  2.5). In this 

flow, the designer can start with an initial application description and use an initial 

datapath for executing the application and generate initial results. Then the designer can 

iteratively modify the application or the datapath and use the NISC toolset to generate a 

new set of results. An important benefit of this approach is that in each iteration the 

designer can focus on one quality metric. For example, the available parallelism in the 

application can be improved in one iteration, the clock frequency of the datapath can be 

improved in another iteration separately, and then the area of the datapath can be 

improved in yet another separate iteration. In this way, multi-optimizations can be 

applied to the design without one optimization complicating another. At the end, from 

several design points, the designer can select the one that best meets the design 

requirements. 
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Figure  2.5. Iterative design using NISC Technology 
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Chapter 3. Modeling NISC 
architecture for compilation 

In NISC, one of the inputs of the compiler is the architecture description. To describe 

the architecture we need both a modeling approach and a language. The model 

determines what information about the architecture must be captured and how this 

information is organized, while the language provides building blocks and composition 

rules to capture these information in text. Both model and language must cover all of the 

needs of the NISC toolset (Figure  2.4). Details of such a complete model are outside of 

the scope of this thesis. A subsystem of multiple NISC components can be described in 

the GNR (Generic Netlist Representation)  [12]. GNR is a multi-aspect description format 

that is used by all the NISC toolset. GNR is an XML  [74] based format and used XML 

Schema  [73] for validation and enforcing the structural rules of GNR. In this chapter I 

focus on the parts of the model that are needed for compilation (i.e. compilation aspect) 

and use the GNR syntax to describe the examples2. 

The compiler aspect of the component models must essentially provide operation 

information of the components as well as their connectivity. In the compiler, we need to 

                                                
2 The GNR syntax and its loader is developed by Bita Gorjiara at CECS in UC Irvine.  
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map the CDFG  [6] and variables of the program to the given NISC architecture. The 

NISC cycle-accurate compiler must schedule operations, bind variables to storages, and 

bind operations to functional-units. For variable binding, we need the mapping between 

variable types (e.g. integer, floating point, character, …) and storages that can hold a 

variable of a particular type. For operation scheduling and binding, we need the mapping 

between operations and datapath resources that implement a particular operation. The 

latter mapping, must also provide the timing of the operation on a particular resource as 

well as the control values (if any) that configure the resource to execute the particular 

operations. As well as considering these requirements, when developing the model, we 

should also consider what information must be explicitly captured in the model and what 

information can be efficiently extracted from the model automatically. During 

development of the NISC model, the general idea was that we capture the detailed 

architecture information needed for generating good HDL and then annotate related 

information that otherwise would be very difficult, complex, time consuming, or even 

impossible to extract automatically.  

In NISC model, each component has a set of input, output, and control ports. The 

architecture is modeled as a netlist which includes instances of components and 

connection that connect an output port of one component to an input port of another 

component. In a hierarchical netlist, a component may also have internal netlist. As such, 

the connections may also be defined between ports the component and the ports of 

components in its internal netlist. Each component has a typed associated with it, and this 

type can be one of: register, register-file, multiplexer, tri-sate buffer, bus, functional-unit, 

memory, controller, module, and NiscArchitecture. NiscArchitecture is the top level 
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component that contains all of the architecture information. It is a special case of a 

module. A module is a hierarchical component that can have an internal netlist. A 

component may provide different aspects for different tools. The information of each 

aspect depends on the component type. The component information required for 

compilation is stored in it compiler aspect.  

Note that in an RTL description the above component types are not explicitly 

differentiated, thus, many synthesis tools must detect component types by relying on the 

description style, which is difficult to formulate and enforce and whose definition varies 

from vendor to vendor! This important difference between the NISC model and a 

structural HDL is the main enabler of the NISC compiler to understand the behavior of 

the datapath and compile on it.  

 
Figure  3.1. Block diagram of a simple NISC architecture 

3.1 NiscArchitecture: the top module of design 

The NiscArchitecture component type is the top module that captures all information 

about a NISC architecture. The ports of this component are used to connect it to rest of a 

system. Figure  3.2 shows the GNR description of a simple NISC component shown in 

Figure  3.1. The datapath of a NISC architecture can have several instances of each 

component type. A component instance has a unique name and a type name that refers to 
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a component description in the library. The datapath description also includes clock and 

control connections (between CW port of the controller and the control ports of 

components). The GNR parser automatically adds these connections if they are not 

already specified  [12].  

<CustomIP type="simpleIP"> 
 <Ports> 
  <Clock n="clk" bitWidth="1"/> 
  <InPort n="reset" bitWidth="1"/> 
  <InPort n="dm_r" bitWidth="32"/> 
  <OutPort n="dm_addr" bitWidth="32"/> 
  <OutPort n="dm_w" bitWidth="32"/> 
  <OutPort n="dm_readEn" bitWidth="1"/> 
  <OutPort n="dm_writeEn" bitWidth="1"/> 
 </Ports> 
 <Netlist> 
  <Components> 
   <Instance n="controller" type="Controller"/> 
   <Instance n="RF" type="RF2x1"> 
    <SetParam n="BIT_WIDTH" val="32"/> 
    <SetParam n="REG_COUNT" val="32"/> 
   </Instance> 
   <Instance n="In0" type="Mux2"/> 
   <Instance n="In1" type="Mux2"/> 
   <Instance n="Out0" type="Mux4"/> 
   <Instance n="comp" type="Comparator"/> 
   <Instance n="alu" type="ALU"/> 
   <Instance n="mem" type="DataMemProxy"/> 
  </Components> 
  <Connections> 
   <Conn src="controller" sPort="cw" dest="controller" dPort="offset" extend="signed" s="9" e="0"/> 
   <Conn src="controller" sPort="cw" dest="In0" dPort="i0" extend="signed" s="9" e="0"/> 
   <Conn src="comp" sPort="o" dest="controller" dPort="status" s="0" e="0"/> 
   <Conn src="Out0" sPort="o" dest="controller" dPort="address"/> 
   <Conn src="Out0" sPort="o" dest="RF" dPort="w0"/> 
   <Conn src="RF" sPort="r0" dest="In0" dPort="i1"/> 
   <Conn src="RF" sPort="r1" dest="In1" dPort="i0"/> 
   <Conn src="In0" sPort="o" dest="comp" dPort="i0"/> 
   <Conn src="In1" sPort="o" dest="comp" dPort="i1"/> 
   <Conn src="comp" sPort="o" dest="Out0" dPort="i0"/> 
   <Conn src="In0" sPort="o" dest="alu" dPort="i0"/> 
   <Conn src="In1" sPort="o" dest="alu" dPort="i1"/> 
   <Conn src="alu" sPort="o" dest="Out0" dPort="i1"/> 
   <Conn src="In0" sPort="o" dest="mem" dPort="addr"/> 
   <Conn src="In1" sPort="o" dest="mem" dPort="w"/> 
   <Conn src="mem" sPort="r" dest="Out0" dPort="i2"/> 
   <Conn src="" sPort="dm_r" dest="mem" dPort="dm_r"/> 
   <Conn src="mem" sPort="dm_addr" dest="" dPort="dm_addr"/> 
   <Conn src="mem" sPort="dm_w" dest="" dPort="dm_w"/> 
   <Conn src="mem" sPort="dm_readEn" dest="" dPort="dm_readEn"/> 
   <Conn src="mem" sPort="dm_writeEn" dest="" dPort="dm_writeEn"/> 
   <!--GNR parser automatically adds clock and control connections --> 
  </Connections> 
 </Netlist> 
 <Compiler-aspect defaultDMem="mem" clockPeriod="1" pointerByteSize="4"> 
  <CwFields n="cwFields"> 
   <Field n="const0" bitWidth="10"/> 
   <CtrlField component="RF" ctrlPort="we"/> 
   <CtrlField component="RF" ctrlPort="wa"/> 
   <CtrlField component="RF" ctrlPort="ra0"/> 
   <CtrlField component="RF" ctrlPort="ra1"/> 
   <CtrlField component="alu" ctrlPort="ctrl"/> 
   <CtrlField component="comp" ctrlPort="ctrl"/> 
   <CtrlField component="mem" ctrlPort="ctrl"/> 
   <CtrlField component="In0" ctrlPort="sel"/> 
   <CtrlField component="In1" ctrlPort="sel"/> 
   <CtrlField component="Out0" ctrlPort="sel"/> 
  </CwFields> 
  <StackPointer><RegisterFile ref="RF" index="0"/></StackPointer> 
  <FramePointer><RegisterFile ref="RF" index="1"/></FramePointer> 
 </Compiler-aspect> 
</CustomIP>  

Figure  3.2. GNR description of the NISC in Figure  3.1 
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3.1.1 Compiler aspect of NiscArchitecture 
In addition to the netlist information of the NiscArchitecture the compiler may also 

need extra information that is captured in the compiler aspect of the NiscArchitecture. 

The datapath of NISC can be customized and simplified to exactly match the 

requirements of the application. Therefore, some of the information in the compiler 

aspect is optional. If such information is not provided in the model, then the 

corresponding features will be disabled in the compiler. In the reset of this section, we 

explain the compiler aspect information of NISC architecture. 

3.1.1.1 Main memory 
The compiler aspect of the NiscArchitecture component, determines one memory 

component in the datapath as the main memory. However, a datapath can have more than 

one memory component, but the user must directly access the rest (this mechanism is 

explain in Chapter  Chapter 5). All normal memory (load/store) and stack (push/pop) 

operations are bound to the specified main memory. If the compiler aspect does not 

specify any memory component as the default main memory, then memory and stack 

operations will be disabled and compiler will generate error if these operations are 

detected in the program. Consequently, the function calls will also be disabled because 

they depend on stack operations.  

3.1.1.2 Clock period length 
The clock period length must be specified in term of the time unit. This value along 

with the operation delays is used by the compiler to determine if multiple operations can 

be chained within one cycle, or if execution of one operation must expand across multiple 

clock cycles. For example, if the clock period is 1 unit and a multiply operation delay is 2 
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units, then the multiply is scheduled to last two cycles before the results can be used by 

another operation or written back to register file. 

3.1.1.3 Size of pointers 
The size of pointers is used by the compiler when handling memory accesses and 

pointer calculations. For example, when loading a pointer to pointer variable (e.g. int** 

pInt; in C), the compiler needs to know what kind of load instruction it should use. 

Also, when performing pointer calculations the pointer size must be considered. Figure 

 3.3 shows an example of how the point size affects the compiler output. 

 

int * p1; 
int ** p2; 
p1 = p1 +2; 
p1 = *p2; 

t1=ADD(p1, 8); 
Write(p1, t1); 
t2=LoadI4(p1); 
Write(p2, t2); 

Compile: 
Pointer size=4 

 
Figure  3.3. Compiling pointer calculations to 3-address code with 4 byte pointers 

3.1.1.4 Special registers 
To support function calls, the Stack Pointer (SP) and the Frame Pointer (FP) registers 

must be specified a register or a register-file element. The FP register always points to the 

start of the stack of a function, while SP register points to the end of the stack. Figure  3.4 

shows how these registers are utilized for function calls. 

void f1() 
{ 
  f2(); 
} 

f1: SP=ADD(SP, f2_parameterSize); 
JUMP(f2_startAddress); 

f2_ret: 
SP=SUB(SP, f2_parameterSize); 

... 
f2: FP=SP 

SP=ADD(SP, f2_stackSize); 
... 
RETURN; 

Compile 

 
Figure  3.4. Using SP/FP registers in the 3-address code of function call 
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3.1.1.5 Structure of control words 
The structure of the control words determines (a) the bit-width and number of 

constant fields, and (b) the index of control bits of each component in the control word. 

The compiler uses this information to convert the FSM into the corresponding control 

value stream. For example in Figure  3.2, the cwField section of the compiler aspect 

specifies that the lower 10 bits of the control word are used for constant values and the 

rest of control word is filled with the control signals of the components. Therefore, the 

corresponding control word looks like Figure  3.5. According to the GNR description of 

Figure  3.2, the first 10 bits of the CW are first sign extended and then connected to the 

In0 multiplexer which provides a constant field for operations with a constant operand. 

39 37 36 35 30 30 26 21 16 11 10 0 

 Out0_sel In1_sel In0_sel mem_ctrl comp_ctrl alu_ctrl RF_ra1 RF_ra0 RF_wa RF_we const0 
 Total: 39-bit CW  

Figure  3.5. Control word structure according to GNR of Figure  3.2 

Figure  3.6 shows the structure of the NISC model after control word structure is 

constructed and proper control connections are added between CW and control ports of 

the components. A sign extender component is also added for accessing constant filed. 

 
Figure  3.6. NISC model of Figure  3.1 after loading and adding control connections 
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3.2 Basic components  

The basic component types include register, register-file, multiplexer, tri-sate buffer, 

bus, functional-unit, memory, and controller. Depending on the component type, the 

compiler aspect of a component may define one or more machine actions (MA). The 

machine actions are the very low level functionalities of the components. The compiler 

constructs different behaviors by composing the MAs and scheduling them in proper 

clock cycles. 

 There are four types of machine actions: Read, Write, Transfer and Execute. The 

Read and Write MAs describe access to a registered storage, while Transfer describes 

data movement from one port to another. The Execute MA represents the operations that 

a component can perform. Each MA may have at most one output which is associated 

with one output port of the corresponding component. Similarly, an MA may have 

several inputs each of which is associated with an input port of the corresponding 

component. Each MA also defines the timing as well as the control values of each control 

port of the corresponding component. Finally, if an Execute MA specifies number of 

pipeline stages, then it is considered as a pipelined operation. Otherwise, if the delay of 

that MA is longer than the clock period, then it is considered as multi-cycle operation. 

Basic components are divided into four groups: (a) register and register-file components 

can only define Read and Write MAs; (b) multiplexer, tri-sate buffer, bus components 

can only define Transfer MAs; (c) functional-unit, memory components can only define 

Execute or Transfer MAs; and (d) controller components defined a set of predefined 

Execute MAs. For example Figure  3.7 shows the GNR description of a small ALU that 

implements three operations, hence its control port is two bits wide (supporting up to four 
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operations). Although RTL generation for NISC is not part of this thesis, it is worth 

mentioning that, in many cases, the RTL description of a component can be easily 

generated from the MA descriptions in its compiler aspect.  

<FU typeName="ALU"> 
 <Params> 
  <Param n="BIT_WIDTH"/> 
  <Param n="DELAY" val="1"/> 
 </Params> 
 <Ports> 
  <InPort n="i0" bitWidth="{@BIT_WIDTH}"/> 
  <InPort n="i1" bitWidth="{@BIT_WIDTH}"/> 
  <OutPort n="o" bitWidth="{@BIT_WIDTH}"/> 
  <CtrlPort n="ctrl" bitWidth="2" default="00"/> 
 </Ports> 
 <Compiler-aspect> 
  <Operations> 
   <Operation n="Add" delay="{@DELAY}"> 
    <Output port="o"/> 
    <Input port="i0"/> 
    <Input port="i1"/> 
    <Ctrl val="00" port="ctrl"/> 
   </Operation> 
   <Operation n="Sub" delay="{@DELAY}"> 
    <Output port="o"/> 
    <Input port="i0"/> 
    <Input port="i1"/> 
    <Ctrl val="01" port="ctrl"/> 
   </Operation> 
   <Operation n="Not" delay="{@DELAY}"> 
    <Output port="o"/> 
    <Input port="i0"/> 
    <Ctrl val="10" port="ctrl"/> 
   </Operation> 
  </Operations> 
 </Compiler-aspect> 
</FU>  

Figure  3.7. GNR description of an example ALU 

As an example, assume that the compiler needs to implement an addition between 

two variables in C code on the datapath of Figure  3.1. For each operand in the DFG of the 

program, the compiler must use a Read MA from register file RF, and a Transfer MA 

through multiplexer In0 or In1. Then, an Execute MA is scheduled on the alu and 
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result is written back by using a Transfer MA through multiplexer Out0 and a Write MA 

on the RF. If the clock period is longer than the sum of all these machine-actions, then the 

ADD operation in DFG takes one cycle, at most; otherwise it takes multiple cycles.  

In addition to Read and Write MAs, the register and register-file components specify 

the variable types that they can store. During compilation, the compiler uses this 

information to bind local variables to proper register storage. Global variables are bound 

to the main memory.  

3.3 Hierarchical components 

The hierarchical components are used to simplify the construction of new 

components from the available ones. This is done with the module component type in the 

NISC architecture model. For example, consider the full GNR description of a two input 

multiplexer (Mux2) shown in Figure  3.8. We can repeat this whole code to create a four 

input multiplexer (Mux4); however different aspects of the components must be again 

described for every tool. Another option is to construct a Mux4 from three Mux2 

components as shown in Figure  3.9 and its corresponding GNR shown in Figure  3.10. At 

compile time, every time a data transfer is needed from an input port of a Mux4 

component to its output port, the compiler schedules several Transfer MA trough 

different internal multiplexers of this module.  

For larger multiplexers built using a module, the increased number of MAs that the 

scheduler should schedule for a single data transfer may slow down the compiler. To 

prevent this negative effect, for frequently used module components, we can add 

compiler aspect that describes the internal behavior of the module and prevent the 
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compiler from going further down the hierarchy for generating the control bits. Figure 

 3.11 shows the updated version of Figure  3.9 with the compiler aspect information. 

Especially for more complex models, this flexibility of modeling allows the designer to 

choose where to spend the most time to gain the most productivity. The GNRs in Figure 

 3.9 and Figure  3.11 will lead to exactly same RTL results at the end. 

<Mux type="Mux2"> 
  <Params> 
    <Param n="BIT_WIDTH"/> 
    <Param n="DELAY" val="0"/> 
  </Params> 
  <Ports> 
    <InPort n="i0" bitWidth="{@BIT_WIDTH}"/> 
    <InPort n="i1" bitWidth="{@BIT_WIDTH}"/> 
    <CtrlPort n="sel" bitWidth="1" default="x"/> 
    <OutPort n="o" bitWidth="{@BIT_WIDTH}"/> 
  </Ports> 
  <Annot_verilog> 
    <Synthesis topModuleName="Mux2"> 
      <VerilogParams> 
        <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
      </VerilogParams> 
      <VerilogCode> 
        <File n="Mux2.v"/> 
      </VerilogCode> 
    </Synthesis> 
    <Simulation topModuleName="Mux2"> 
      <VerilogParams> 
        <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
      </VerilogParams> 
      <VerilogCode> 
        <File n="Mux2.v"/> 
      </VerilogCode> 
    </Simulation> 
  </Annot_verilog> 
  <Annot_compiler> 
    <Transfers> 
      <DataTransfer inPort="i0" outPort="o" transferDelay="{@DELAY}"> 
        <Ctrl val="0" port="sel"/> 
      </DataTransfer> 
      <DataTransfer inPort="i1" outPort="o" transferDelay="{@DELAY}"> 
        <Ctrl val="1" port="sel"/> 
      </DataTransfer> 
    </Transfers> 
  </Annot_compiler> 
</Mux>  

Figure  3.8. GNR description of a Mux2 multiplexer 
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Figure  3.9. Construction of Mux4 from several Mux2 components 

<Mux type="Mux4"> 
 <Params> 
  <Param n="BIT_WIDTH"/> 
  <Param n="DELAY" val="0"/> 
 </Params> 
 <Ports> 
  <InPort n="i0" bitWidth="{@BIT_WIDTH}"/> 
  <InPort n="i1" bitWidth="{@BIT_WIDTH}"/> 
  <InPort n="i2" bitWidth="{@BIT_WIDTH}"/> 
  <InPort n="i3" bitWidth="{@BIT_WIDTH}"/> 
  <CtrlPort n="sel0" bitWidth="1" default="x"/> 
  <CtrlPort n="sel1" bitWidth="1" default="x"/> 
  <OutPort n="o" bitWidth="{@BIT_WIDTH}"/> 
 </Ports> 
 <Netlist> 
  <Components> 
   <Instanse n="m0" type="Mux2"/> 
   <Instanse n="m1" type="Mux2"/> 
   <Instanse n="m2" type="Mux2"/> 
  </Components> 
  <Connections> 
   <Conn src="" srcPort="i0" dest="m0" destPort="i0"/> 
   <Conn src="" srcPort="i1" dest="m0" destPort="i1"/> 
   <Conn src="" srcPort="i2" dest="m1" destPort="i0"/> 
   <Conn src="" srcPort="i3" dest="m1" destPort="i1"/> 
   <Conn src="m0" srcPort="o" dest="m2" destPort="i0"/> 
   <Conn src="m1" srcPort="o" dest="m2" destPort="i1"/> 
   <Conn src="m2" srcPort="o" dest="" destPort="o"/> 
   <Conn src="" srcPort="sel0" dest="m0" destPort="sel"/> 
   <Conn src="" srcPort="sel0" dest="m2" destPort="sel"/> 
   <Conn src="" srcPort="sel1" dest="m3" destPort="sel"/> 
  </Connections> 
 </Netlist> 
</Mux> 

 
Figure  3.10. GNR of Mux4 built from several Mux2 components 
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<Mux type="Mux4"> 
 <Params> 
  <Param n="BIT_WIDTH"/> 
  <Param n="DELAY" val="0"/> 
 </Params> 
 <Ports> 
  <InPort n="i0" bitWidth="{@BIT_WIDTH}"/> 
  <InPort n="i1" bitWidth="{@BIT_WIDTH}"/> 
  <InPort n="i2" bitWidth="{@BIT_WIDTH}"/> 
  <InPort n="i3" bitWidth="{@BIT_WIDTH}"/> 
  <CtrlPort n="sel" bitWidth="2" default="xx"/> 
  <OutPort n="o" bitWidth="{@BIT_WIDTH}"/> 
 </Ports> 
 <Netlist> 
  <Components> 
   <Instanse n="m0" type="Mux2"/> 
   <Instanse n="m1" type="Mux2"/> 
   <Instanse n="m2" type="Mux2"/> 
  </Components> 
  <Connections> 
   <Conn src="" srcPort="i0" dest="m0" destPort="i0"/> 
   <Conn src="" srcPort="i1" dest="m0" destPort="i1"/> 
   <Conn src="" srcPort="i2" dest="m1" destPort="i0"/> 
   <Conn src="" srcPort="i3" dest="m1" destPort="i1"/> 
   <Conn src="m0" srcPort="o" dest="m2" destPort="i0"/> 
   <Conn src="m1" srcPort="o" dest="m2" destPort="i1"/> 
   <Conn src="m2" srcPort="o" dest="" destPort="o"/> 
  </Connections> 
 </Netlist> 
 <Annot_compiler> 
  <Transfers> 
   <DataTransfer inPort="i0" outPort="o" transferDelay="{@DELAY}"> 
    <Ctrl val="0" port="sel1" /><Ctrl val="0" port="sel0" /> 
   </DataTransfer> 
   <DataTransfer inPort="i1" outPort="o" transferDelay="{@DELAY}"> 
    <Ctrl val="0" port="sel1" /><Ctrl val="1" port="sel0" /> 
   </DataTransfer> 
   <DataTransfer inPort="i2" outPort="o" transferDelay="{@DELAY}"> 
    <Ctrl val="1" port="sel1" /><Ctrl val="0" port="sel0" /> 
   </DataTransfer> 
   <DataTransfer inPort="i3" outPort="o" transferDelay="{@DELAY}"> 
    <Ctrl val="1" port="sel1" /><Ctrl val="1" port="sel0" /> 
   </DataTransfer> 
  </Transfers> 
 </Annot_compiler>  
</Mux>  

Figure  3.11. Mux4 module with compiler aspect to speed up compilation 

3.4 Comparison with other approaches 

Model based compilation has be the focus of many retargetable compilers. Rather 

than being fixed for a single processor, the retargetable compilers can generate code for a 

class of processors usually captured in an Architecture Description Language (ADL) 



 38 

 [52] [71]. As we explained in section  1.2, all retargetable compilers use instruction 

behaviors for compilation. Behavioral ADLs (e.g. LISA  [48] and EXPRESSION  [3]) 

explicitly describe the behavior of all possible instructions while structural ADLs (e.g. 

RECORD  [58] [59], CHESS  [32], and MIMOLA  [51] [63]) describe the structure of the 

processor and hence instruction behaviors must be extracted from them.  

The proposed model for the NISC architecture has several advantages over 

retargetable compilation models including: 

• Previous models are very lengthy and complex because they should either capture 

all possible instructions format, or capture the instruction decoder as well as the 

datapath. The NISC model only captures the datapath netlist and all combinations 

of possible operations are generated by the compiler. For example, if datapath has 

two fully connected adder and multiplier units, the NISC model only need to 

capture the existence of these two units. However, in an instruction based ADL, 

all compilations of ADD, MUL, ADD_MULL, MULL_ADD instructions with 

both register operands and constant operands must be described. In a more 

complex datapath with more possibilities, this problem becomes worse. 

• Behavioral ADLs rarely support hardware generation and only target compilation 

or simulation. Even those who generate RTL cannot achieve good hardware 

quality because many of the architectural details are missing in the description. 

Even the structural ADLs do not capture the architecture in the level of details of 

the NISC model (i.e. capturing down to wires, multiplexers, and control signals). 

Therefore, the NISC model not only supports compilation, but also is suitable for 

generating good quality RTL for hardware implementation. 
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• All retargetable compilers target a complete processor and none of them can be 

used for generating dedicated IP blocks. Approaches such as TIPI  [68] that have 

attempted to target IP blocks, have paid too much attention to hardware 

generation but little to compilation, which has prevented them from generating a 

compiler for their approach. The NISC model is a balanced abstraction that 

enables both efficient compilation and efficient hardware generation for any 

datapath complexity. 

• Due to its detailed architectural information, the NISC model enables the 

compiler to use operation chaining, multi-cycle or pipelined operations. These 

features are supported in NISC by (a) properly describing the architecture 

structure and timing information in the model, and (b) a new scheduling algorithm 

explained in  Chapter 4. None of the other ADLs can directly support these 

features. 

• All previous compilation models always assume that the data forwarding 

connections connect the output of all functional units to all of the inputs of all 

functional units. This results in a huge hardware overhead on the final processor. 

Only one approach  [8] has addressed partial data forwarding and bypass paths. 

However, this approach uses operation tables that must describe all permutations 

of forwarding paths between all operations, which can be very lengthy. The NISC 

model can accurately describe non-uniform data forwarding by only capturing the 

actual wires between functional units. The NISC compiler algorithms can then use 

this information to utilize bypass paths properly. 
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• Other modeling approaches for retargetable compilation do not consider the value 

of clock period in the model. They only capture timings based on number of clock 

cycles. In contrast, the NISC model and the corresponding algorithms also 

consider the length of clock period to determine whether operations can be 

chained or if an operation takes several cycles. This important feature the means 

of readjusting the schedule based on the actual timings collected form a real 

implementation.  

• Other retargetable compilation approaches typically need one model and 

description for mapping operations to assembly instructions and another model 

for mapping assembly instructions to their binary values. In other words, one 

model for compiler and another model for the linker. By capturing the control 

connections in the datapath model, the NISC compiler can directly map the 

operations to the corresponding control binary. 
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Chapter 4. Compilation 

In the rest of this chapter we explain the compilation algorithm. From this point on, 

any reference to the information of the datapath implies that the model of the NISC 

architecture contains that information. 

4.1 Overview of compilation algorithm 

In this section we illustrate the basis of our scheduling and binding algorithm using 

several examples. The input of algorithm is the CDFG of an application, netlist of 

datapath components and the clock period of the system. The output is an FSM in which 

each state represents a set of Machine Actions (MAs) that execute in one clock cycle. The 

set of MAs are later used to generate the states of FSM and the control bits of 

components. 

As opposed to traditional HSL, we can not schedule operations merely based on the 

delay of the functional units. The number of clock cycles (or states) between the schedule 

of an operation and its successor depends on both the binding of operations to functional 

units (FU) and the delay of the path between corresponding FUs. For example, suppose 

we want to map a DFG on a datapath as shown in Figure  4.1. Operation shift-left (>>) 

can read the result of operation + in two ways. If we schedule operation + on U2 and 
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store the result in register file RF, then operation >> must be scheduled on U3 in the next 

cycle to read the result from RF through bus B2 and multiplexer M2. Operation >> can 

also be scheduled in the same cycle with operation + and read the result directly from U2 

through multiplexer M2. Therefore, selection of the path between U2 and U3 can directly 

affect the schedule. Since knowing the path delay between operations requires knowing 

the operation binding, the scheduling and binding must be performed simultaneously. 

+ 

>> 

x y 

z a 

b 
a=x+y; 
b=a >> z; 

 

(a) DFG (b) Datapath 
Figure  4.1. Different possible schedules for the DFG depending on binding 

The basic idea in the algorithm is to schedule an operation and all of its predecessors 

together. An output operation in the DFG of a basic block is an operation that does not 

have a successor in that basic block. We start from output operations and traverse the 

DFG backward. Each operation is scheduled after all its successors are scheduled. The 

scheduling and binding of successors of an operation determine when and where the 

result of that operation is needed. This information can be used for: utilizing available 

paths between FUs efficiently, chaining operations, avoiding unnecessary register file 

read/writes, etc. 
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During schedule, we consider each operation and all of its predecessors, i.e. the sub-

tree of operations behind each operation. Therefore, we need to partition the DFG of the 

basic block into sub-trees. To make sure the whole DFG is processed, we start from sub-

tress whose root is an output operation of the basic block. The leaves are input variables, 

constants, or output operations from other basic blocks. If the successors of an operation 

belong to different sub-trees, then that operation is considered as an internal output and 

will have its own sub-tree. Such nodes are detected during scheduling. Figure  4.2 shows 

an example DFG that is partitioned into three sub-trees. The roots of the sub-trees (shown 

with shaded nodes) are the output operations. The algorithm schedules each sub-tree 

separately. If during scheduling of the operations of a sub-tree, the schedule of an 

operation fails, then that operation is considered an internal output and becomes the root 

of a new sub-tree. A sub-tree is available for schedule as soon as all successors of its root 

(output operation) are scheduled. Available sub-trees are ordered by the mobility of their 

root. The algorithm starts from output nodes and schedules backward toward their inputs, 

therefore more critical outputs tend to be generated towards the end of the basic block 

(similar to ALAP schedule). 

 

 
 

 

 
  

 
 

 
Figure  4.2. Partitioning a DFG into output sub-trees 

During scheduling, different types of values may be bound to different types of 

storages (variable binding). For example, global variables may be bound to memory, 

local variables to stack or register file, and so on. A constant is bound to memory or the 
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constant fields in the control word (CW) register, depending on its size. A control word 

may have limited number of constant fields (e.g. Figure  3.2) that are generated in each 

cycle along with the rest of control bits. These constant fields are loaded into the CW 

register and then transferred to a proper location in datapath after sign extension (see 

Figure  3.6). The NISC compiler determines the values of constant(s) in each cycle. It also 

schedules proper set of MAs to transfer the value(s) to where it is needed. 

In the rest of this section, through several examples, we illustrate how the DFG is 

partitioned into sub-trees during scheduling. We also show that how the scheduling 

algorithm works for simple datapaths as well as those that have feature such as multi-

cycle operation, pipelined operation, heterogeneous pipelining, heterogeneous data 

forwarding, and operation chaining.  

 

× × 

+ 

x y z 2 

a b 

c 
a=x×y; 
b=z×2; 
c=a+b;  

(a) DFG (b) Datapath without pipelining 
Figure  4.3. Compiling on a datapath without pipelining 

4.1.1 Example: Simple datapath 
Consider the example DFG of Figure  4.3(a) to be mapped on the simple datapath of 

Figure  4.3(b). Assume that the clock period is 20 units and delays of U1, U2, and busses 

are 17, 7, and 1 units, respectively. We schedule the operations of basic block so that all 

results are available before last cycle, i.e. 0; therefore, the MAs are scheduled in negative 

cycle numbers. In each step of the algorithm, we try to schedule the sub-trees that can 
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generate their results before a given cycle clk. The clk starts from 0 and is decremented in 

each step until all sub-trees of a basic block are scheduled. 

When scheduling an output sub-tree, first step is to know where the output is stored. 

In our example, assume c is bound to register file RF. We must schedule operation + so 

that its result can be stored in destination RF in cycle -1 and be available for reading in 

cycle 0. From the list of available functional units (FUs), we first select an FU that 

implements + (operation binding). Then we make sure that a path exists between selected 

FU and destination RF and all elements of the path are available (not reserved by other 

operations) in cycle -1 (interconnect binding). In this example we select U2 for + and bus 

B3 for transferring the results to RF. Resource reservation will be finalized if the 

schedule of operands also succeeds. The next step is to schedule proper MAs in order to 

transfer the value of a to the left input port of U2 and value of b to the right input port of 

U2. Figure  4.4 shows the status of schedule after scheduling the + operation. The figure 

shows the set of MAs that are scheduled in each cycle to read or generated a value. At 

this point, B1 and B2 are considered the destinations to which values of a and b must be 

transferred in clock cycle -1, respectively. 

clock Scheduled MAs 
-1 B1=?; B2=?; B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.4. Schedule of MAs after scheduling + operation 

In order to read the values of a and b, we need to schedule them on their 

corresponding FU (i.e. U1 multiplier) and then send the result to U2. Since there is no 

path between any U1 and U2, then we assume that a and b are stored in register file RF 

and will try to schedule them later. Since in cycle -1, we can read from register file, then 

we schedule the proper Read MAs from RF and consider a and b as internal outputs. 
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Figure  4.5 shows the status of schedule after scheduling Read MAs. The sub-tree of c is 

now completely scheduled and the resource reservations can be finalized. 

clock Scheduled MAs 
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.5. Schedule of MAs after scheduling h sub-tree 

The results of sub-tress of a and b must have their result ready before cycle -1. 

Therefore, the corresponding MAs must be scheduled in or before clock cycle -2 and 

write the result in register file RF. We start from a and schedule its sub-tree first. We 

need to write the result to RF and choose an FU to perform × operation. We choose 

multiplier U1 and schedule the operands from RF to U1 through busses B1 and B2. 

Figure  4.6 shows the schedule status after completing the schedule of a. 

clock Scheduled MAs 
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); RF(a)=B3; 
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.6. Schedule of MAs after scheduling a sub-tree 

After scheduling a on U1, there are no more multipliers left to schedule operation b. 

Therefore, we need to decrement the clock value and try again in cycle -3. In this cycle, 

we need multiplier U1, both busses B1 and B2, one register file port, and the constant 

filed in the CW. The constant filed is read from CW and is sign extended and then passed 

to the proper bus. Since all these resources are available in clock cycle -3, we can 

successfully schedule b. The final schedule of the complete DFG of Figure  4.3 is shown 

in Figure  4.7.  

clock Scheduled MAs 
-3 B1=RF(z); B2=CW; B3=U1(B1, B2); RF(b)=B3; 
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); RF(a)=B3; 
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.7. Schedule of MAs after scheduling DFG of Figure  4.3 
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4.1.2 Example: multi-cycle operation 
Consider the example of Figure  4.3 again but this time, let’s assume that the clock 

period is still 10 units, and the delay of U1, U2, and busses are 17, 7, and 1 units, 

respectively. In this case, the delay of multiplier U1 is longer than a single cycle. If we 

repeat the scheduling steps, everything remains the same as what was explained in 

Section  4.1.1. But this time, the schedule of a and b are two cycles. This means their 

inputs must remain stable for two cycles, but they can write their results at the end of 

second cycle. Figure  4.8 shows the schedule status after scheduling the DFG. Note that 

the result in Figure  4.8 is two cycles longer than that of Figure  4.7 but since the clock 

period is shorter, it runs overall faster (i.e. 5x10 < 3x20). This shows one of the benefits 

of multi-cycle operations, and our algorithm can fully utilize it. 

clock Scheduled MAs 
-5 B1=RF(z);B2=CW;B3=U1(B1, B2); 
-4 B1=RF(z);B2=CW;B3=U1(B1, B2); RF(b)=B3; 
-3 B1=RF(x);B2=RF(y);B3=U1(B1, B2); 
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); RF(a)=B3; 
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.8. Schedule of Figure  4.3(a) DFG with a multi-cycle multiplier 

4.1.3 Example: pipelined operation 
Consider the example DFG of Figure  4.9(a) to be mapped on the datapath of Figure 

 4.9(b) which has a pipelined multiplier. Assume that the clock period is 10 units and 

delays of U2 and busses are 7 and 1 units, respectively. Also U1 has two pipeline stages. 

This means that U1 takes two cycles to generate its results, but the inputs can change 

every cycle, and respectively the output can be read in every cycle. As before, we 

schedule the operations of basic block so that all results are available before last cycle, 

i.e. 0; therefore, the MAs are scheduled in negative cycle numbers.  
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× 

 
× 

+ 

x y z 2 

a b 

c 
a=x×y; 
b=z×2; 
c=a+b;  

(a) DFG (b) Datapath without pipelining 
Figure  4.9. Compiling on a datapath without pipelining 

When scheduling an output sub-tree, first step is to know where the output is stored. 

In our example, assume c is bound to register file RF. We must schedule operation + so 

that its result can be stored in destination RF in cycle -1 and be available for reading in 

cycle 0. From the list of available functional units (FUs), we first select an FU that 

implements + (operation binding). Then we make sure that a path exists between selected 

FU and destination RF and all elements of the path are available (not reserved by other 

operations) in cycle -1 (interconnect binding). In this example we select U2 for + and bus 

B3 for transferring the results to RF. Resource reservation will be finalized if the 

schedule of operands also succeeds. The next step is to schedule proper MAs in order to 

transfer the value of a to the left input port of U2 and value of b to the right input port of 

U2. Figure  4.10 shows the status of schedule after scheduling the + operation. The figure 

shows the set of MAs that are scheduled in each cycle to read or generated a value. At 

this point, B1 and B2 are considered the destinations to which values of a and b must be 

transferred in clock cycle -1, respectively. 

clock Scheduled MAs 
-1 B1=?; B2=?; B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.10. Schedule of MAs after scheduling + operation 
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In order to read the values of a and b, we need to schedule them on their 

corresponding FU (i.e. U1 multiplier) and then send the result to U2. Since there is no 

path between any U1 and U2, we assume that a and b are stored in register file RF and 

will try to schedule them later. Since in cycle -1, we can read from register file, then we 

schedule the proper Read MAs from RF and consider a and b as internal outputs. Figure 

 4.11 shows the status of schedule after scheduling Read MAs. The sub-tree of c is not 

completely scheduled and the resource reservations can be finalized. 

clock Scheduled MAs 
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.11. Schedule of MAs after scheduling h sub-tree 

The results of sub-tress of a and b must have their result ready before cycle -1. 

Therefore, the corresponding MAs must be scheduled in or before clock cycle -2 and 

write the result in register file RF. We start from a and schedule its sub-tree first. We 

need to write the result to RF and choose an FU to perform × operation. We choose 

multiplier U1 and schedule the operands from RF to U1 through busses B1 and B2.This 

time, since U1 is pipelined, we schedule its output to be read in cycle -2 while its inputs 

are scheduled in cycle -3. Figure  4.12 shows the schedule status after completing the 

schedule of a. 

clock Scheduled MAs 
-3 B1=RF(x); B2=RF(y); 
-2 B3=U1(B1, B2); RF(a)=B3; 
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.12. Schedule of MAs after scheduling a sub-tree on pipelined multiplier 

After scheduling a on U1 in cycle -2, there is no more multiplier left to schedule 

operation b. Therefore, we need to decrement the clock value and try again in cycle -3. In 

this cycle, multiplier U1 itself is available but both of its inputs as well as busses B1 and 
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B2 are not available. However, we do need these resources until cycle -4. Therefore, we 

can successfully schedule operation b in cycle -3. The final schedule of the complete 

DFG is shown in Figure  4.13. Note that, because of pipelined FU, the result in Figure 

 4.13 is one cycle shorter (faster) than that of Figure  4.8. In all of these cases, we are using 

the same algorithm, i.e. walk back on DFG and schedule and bind!  

clock Scheduled MAs 
-4 B1=RF(z); B2=CW; 
-3 B1=RF(x); B2=RF(y); B3=U1(B1, B2); RF(b)=B3; 
-2 B3=U1(B1, B2); RF(a)=B3; 
-1 B1=RF(a); B2=RF(b); B3=U2(B1, B2);  RF(c)=B3; 
0  

Figure  4.13. Schedule of MAs after scheduling DFG of Figure  4.9 

4.1.4 Example: heterogeneous pipelining and data forwarding  
In this section we show an example to illustrate how our algorithm supports 

heterogeneous pipelining and data forwarding. This is one of the unique features of our 

algorithm that has no been covered by previous scheduling algorithm. Consider the 

example DFG of Figure  4.14(a) to be mapped on the datapath of Figure  4.14(b). Assume 

that the clock period is 20 units and delays of U1, U2, and busses are 17, 7, and 1 units, 

respectively.  

 

× 

 
× 

+ 

x y z 2 

a b 

c 
a=x×y; 
b=z×2; 
c=a+b;  

(a) DFG (b) Datapath with heterogeneous pipelining and forwarding 
Figure  4.14. Compiling in presence of heterogeneous pipelining and data forwarding 
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When scheduling an output sub-tree, first step is to know where the output is stored. 

In this example, assume c is bound to register file RF. We must schedule operation + so 

that its result can be stored in destination RF in cycle -1 and be available for reading in 

cycle 0. From the list of available functional units (FUs), we first select an FU that 

implements + (operation binding). Then we make sure that a path exists between selected 

FU and destination RF and all elements of the path are available (not reserved by other 

operations) in cycle -1 (interconnect binding). In this example we select U2 for + and bus 

B3 for transferring the results to RF. Resource reservation will be finalized if the 

schedule of operands also succeeds. The next step is to schedule proper MAs in order to 

transfer the value of a to the left input port of U2 and value of b to the right input port of 

U2. Figure  4.15 shows the status of schedule after scheduling the + operation. The figure 

shows the set of MAs that are scheduled in each cycle to read or generate a value. At this 

point, M1 and B2 are considered the destinations to which values of a and b must be 

transferred in clock cycle -1, respectively. 

clock Scheduled MAs 
-1 M1=?; B2=?; B3=U2(M1, B2);  RF(c)=B3; 
0  

Figure  4.15. Schedule of MAs after scheduling + operation 

In order to read the values of a and b, we need to schedule them on their 

corresponding FU (i.e. U1 multiplier) and then send the result to U2. We start from a and 

schedule its sub-tree first. We can utilize the available forwarding path by scheduling a 

on multiplier U1 and passing the results to the left port of U2 via register R1 and 

multiplexer M1. Because of the register R1, the multiplication operation on U1 is actually 

scheduled one cycle before operation of U2. We then continue to schedule the operands 

of a and since all resources are available, we can schedule the sub-tree of a as well. 
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Afterwards, if we try to schedule sub-tree of b, we will see that there is no path between 

multiplier U1 and right port of U1. Therefore, we assume that b can be read from register 

file RF in clock cycle -1 and it will be scheduled later as an internal output to write its 

output to RF. Figure  4.16 shows the status of schedule at this point. 

clock Scheduled MAs 
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); R1=B3; 
-1 M1=R1; B2=RF(b); B3=U2(M1, B2);  RF(c)=B3; 
0  

Figure  4.16. Schedule of MAs after scheduling h sub-tree 

At this point the only sub-tree left to schedule is b that must have its result ready 

before cycle -1. Therefore, the corresponding MAs must be scheduled in or before clock 

cycle -2 and write the result in register file RF. We first choose the proper FU (i.e. U1) 

and find a path between its output and the input of RF. The only available path is the 

pipelined path that goes through register R1 and bus B3. Therefore, the execution of U1 is 

pushed back one more cycle from -2 to -3. Figure  4.17 shows the full schedule of DFG 

after scheduling all available sub-trees.  

clock Scheduled MAs 
-3 B1=RF(z); B2=CW; B3=U1(B1, B2); R1=B3; 
-2 B1=RF(x); B2=RF(y); B3=U1(B1, B2); R1=B3; RF(c)= R1; 
-1 M1=R1; B2=RF(b); B3=U2(M1, B2);  RF(c)=B3; 
0  

Figure  4.17. Schedule of MAs after scheduling a sub-tree 

Note that results of Figure  4.17 and Figure  4.7 both take 3 cycles. However, since the 

datapath of Figure  4.14(b) is pipelined, it can potentially run at a faster clock frequency 

than datapath of Figure  4.3(b). The same scheduling algorithm could handle the available 

pipelining and forwarding although not all paths were pipelined and not all units had data 

forwarding.  
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4.1.5 Example: pipelining, forwarding, and operation chaining 
Consider the example DFG of Figure  4.18(a) to be mapped on the datapath of Figure 

 4.18(b). Again, assume that the clock period is 20 units and delays of U1, U2, U3, 

multiplexers and busses are 17, 7, 5, 1 and 1 units, respectively. Since there are enough 

busses in this datapath and also the delay of busses, multiplexers, U2, and U3 together is 

less than the clock period, then we should be able to chain + and >> operations into one 

cycle. This example also has heterogeneous pipelining and data forwarding. The 

following shows how our algorithm supports all of these features simultaneously. 

As before, we schedule the operations of basic block so that all results are available 

before last cycle, i.e. 0; therefore, the MAs are scheduled in negative cycle numbers. In 

each step of the algorithm, we try to schedule the sub-trees that can generate their results 

before a given cycle clk. The clk starts from 0 and is decremented in each step until all 

sub-trees of a basic block are scheduled. 
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a=v×x; 
b=y×z; 
c=a+b; 
d=c >> 2; 

 
(a) DFG. (b) datapath with forwarding and operation chaining 
Figure  4.18. Compiling in presence of forwarding and operation chaining 

As before, assume d is bound to register file RF. We must schedule operation >> so 

that its result can be stored in destination RF in cycle -1 and be available for reading in 

cycle 0. We first select a FU that implements >> (operation binding). Then we make sure 
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that a path exists between selected FU and destination RF and all elements of the path are 

available (not reserved by other operations) in cycle -1 (interconnect binding). In this 

example we select U3 for >> and bus B4 for transferring the results to RF. Resource 

reservation will be finalized if the schedule of operands also succeeds. The next step is to 

schedule proper MAs in order to transfer the value of c to the left input port of U3 and 

constant 2 to the right input port of U3. Figure  4.19 shows the status of schedule after 

scheduling the >> operation. The figure shows the set of MAs that are scheduled in each 

cycle to read or generate a value. At this point, B3 and M2 are considered the destinations 

to which values of 2 and c must be transferred in clock cycle -1, respectively. 

clock Scheduled MAs 
-1 M2=?; B3=?; B4=U3(M2, B3); RF(d)=B4; 
0  

Figure  4.19. Schedule of MAs after scheduling >> operation 

In order to read constant 2, we need to put the value of CW register on bus B3. As 

for variable c, we schedule the + operation on U2 to perform the addition and pass the 

result to U3 though multiplexer M2. Note that delay of reading operands of + operation 

and executing it on U2, plus the delay of reading operands of >> operation and executing 

it on U3 and writing the results to RF is less than one clock cycle. Therefore, all of the 

corresponding MAs are scheduled together in clock cycle -1. The algorithm chains the 

operations in this way, whenever possible. The new status of scheduled MAs is shown in 

Figure  4.20. In the next step, we should schedule the × operations to deliver their results 

to the input ports of U2. 

clock Scheduled MAs 
-1 M1=?; B2==?; M2=U2(M1, B2); B3=CW; B4=U3(M2, B3); RF(d)=B4; 
0  

Figure  4.20. Schedule of MAs after scheduling + operation 
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The left operand (i.e. a) of operation c can be scheduled on U1 to deliver its result 

through register R1 in cycle -2 and multiplexer M1 in cycle -1. At this point, no other 

multiplier is left to generate the right operand (b) and directly transfer it to the right input 

port of U2. Therefore, we assume that b is stored in the register file and try to read it from 

there. If the read is successful, the corresponding × operation (b) is considered as an 

internal output and will be scheduled later. Figure  4.21 shows the status of schedule at 

this time. The sub-tree of output c is now completely scheduled and the resource 

reservations can be finalized. 

clock Scheduled MAs 
-2 B1=RF(v); B2=RF(x); R1=U1(B1, B2); 
-1 M1=R1; B2=RF(b); M2=U2(M1, B2); B3=CW; B4=U3(M2, B3); RF(d)=B4; 
0  

Figure  4.21. Schedule of MAs after scheduling c sub-tree 

The sub-tree of internal output b must generate its result before cycle   -1 where it is 

read and used by operation +. Therefore, the corresponding MAs must be scheduled in or 

before clock cycle -2 and write the result in register file RF. The path from U1 to RF goes 

through register R1 and hence takes more than one cycle. The second part of the path 

(after R1) is scheduled in cycle -2 and the first part (before R1) as well as the execution of 

operation × on U1 is scheduled in cycle -3. The complete schedule is shown in Figure 

 4.22. 

clock Scheduled MAs 
-3 B1=RF(c); B2=RF(d); R1=U1(B1, B2); 
-2 B1=RF(a); B2=RF(b); R1=U1(B1, B2); B4=R1; RF(f)=B4; 
-1 M1=R1; B2=RF(f); M2=U2(M1, B2); B3=CW; B4=U3(M2, B3); RF(h)=B4; 
0  

Figure  4.22. Schedule of MAs after scheduling all sub-trees 
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4.1.6 Example: Controller pipelining 
As a final example, consider the CFG of Figure  4.23(a) on the datapath of Figure 

 4.23 which has controller pipelining through register status. The internals of the 

controller is also shown in this figure. The CFG is in fact a conditional jump. In order to 

handle jump operations similar to other operations, we assume that jump writes its output 

to PC register and has two inputs: (a) the target address, and (b) a condition value. If we 

assume that the address generator (AG) inside the controller implements a Jump operation 

then handling (conditional) jumps in presence of controller pipelining becomes very 

similar to handling other operations in presence of datapath pipelining as shown bellow. 

+ 

 
== 

x y 

L 

a 

PC 

b 

a=x+y; 
b=a==10; 
if (b) goto L; 

Jump 

10 

 
(a) CFG (b) Datapath with controller pipelining 

Figure  4.23. Compiling CFG in presence of controller pipelining 

In this example, we know that the output of Jump operation is bound to PC register 

inside the controller. We need now to schedule Jump operation so that its result can be 

stored in destination PC in cycle -1 and be available for reading in cycle 0. We first select 

a FU that implements Jump (i.e. AG). Then we make sure that a path exists between 

selected FU and destination PC and all elements of the path are available in cycle -1. In 

this case, the path consists of only a wire so it is always available. As before, now we 

need to schedule the input operands of the Jump operation to pass their values to proper 

ports of the AG, i.e. AG.offset and AG.status ports. Figure  4.24 shows the status of 
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schedule after scheduling the jump operation. At this point, AG.offset and AG.status are 

considered the destinations to which values of L and b must be transferred in clock cycle 

-1, respectively. 

clock Scheduled MAs 
-1 AG.offset=?; AG.status=?; PC=AG(AG.offset, AG.status); 
0  
Figure  4.24. Schedule of MAs after scheduling jump operation 

The value of L can be directly read from the CW in cycle -1. We need to schedule 

the value b to be available at AG.status in cycle -1. We first find the proper FU for 

executing b, i.e. U1. There is a pipelined path between U1 and AG.status which goes 

through register status. Therefore the execution of b is pushed back one cycle to cycle -2. 

Figure  4.25 shows the status of the schedule after scheduling the == operation. At this 

point we need to schedule operation a and constant 10 to be available in cycle -2 on the 

input ports of U1, i.e. bus B1 and multiplexer M1. Note that since == operation is 

symmetric; the input operands can appear on either ports of U1.  

clock Scheduled MAs 
-2 B1=?; M1=?; status=U1(B1, M1);  
-1 AG.offset=CW; AG.status= status; PC=AG(AG.offset, AG.status); 
0  

Figure  4.25. Schedule of MAs after scheduling == operation 

Between the operands of b, we first try to schedule a since it has a deeper sub-tree. 

We can select FU U2 and route the result to right input port of U1 through register R1 

and multiplexer M1. Again since this path is pipelined, it will push the execution of b one 

cycle back to cycle -3. We can then schedule a read from operands of a in cycle -3. Once 

we have successfully scheduled a, we get back to second operand of b, i.e. constant 10. 

Since bus B1 and constant filed of CW are both free in cycle -2, we can successfully 
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schedule a read from CW via bus B1 to get the constant to the left port of U1. Figure  4.27 

shows the complete schedule of the jump operation of Figure  4.23. 

clock Scheduled MAs 
-3 B1=RF(x); B2=RF(y); R1=U2(B1, B2); 
-2 B1=CW; M1=R1; status=U1(B1, M1);  
-1 AG.offset=CW; AG.status=status; PC=AG(AG.offset, AG.status); 
0  
Figure  4.26. Full schedule of jump in presence of controller pipelining 

4.2 Cycle-accurate compilation algorithm 

In this section, we describe our algorithm for compiling the application to a custom 

datapath. When compiling the CDFG of each function of a program, we must consider 

the structure of the controller for compiling the control-flow graph (CFG) and consider 

the structure of datapath for compiling the DFG. This process is described in the next two 

subsections. Description of the algorithm uses the following definitions: 

• Each basic block has a schedule status ss, where ss.MAs(clk) stores the set of scheduled 

MAs in clock cycle clk, and ss.resTable(clk) stores the reservation status of resources in 

clock cycle clk, and ss.length shows the number of scheduled states for that block. 

• For an operation op, op.result is the value generated by op and op.operands is the list of 

results of predecessors of op. 

• For a functional unit FU, FU.output is the output port of FU and FU.inputs is the set of 

input ports of FU. A functional unit may implement multiple operations. For each 

operation, FU.timing represents the delay of the unit (or its stages if it is pipelined) as well 

as the duration of applying the control signals to the unit. 

• A path p is the list of resources that can transfer a value from one point to another. These 

resources include busses, multiplexers and registers. The timing of resources of p is stored 
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in p.timings and is calculated based on delay of buses or multiplexers, or setup time and 

read delay of registers or register-files. 

• A destination dst is a storage or an input port of a functional unit. 

4.2.1 Mapping the CFG of the program 
The result of NISC compiler is an FSM that can be implemented in logic or using a 

memory. In a memory-based implementation the state register is a program counter 

register (PC). Therefore, a state change in the FSM corresponds to incrementing the PC 

or loading it with a new value using a jump operation. While incrementing PC always 

takes one cycle, loading it with a new value may take more than one cycle. The result of 

scheduling a basic block is always a sequence of states (marked by value of clk). We may 

only need a jump at the end of a basic block, if the last state of the block is not before the 

first state of the next basic block. In the algorithm, we assume that the order of basic 

blocks is given, and that there may be jump operation at the end of some basic blocks.  

Since we perform the scheduling backward, the result will be a set of states 

numbered from –N to +bd. The return address of a function is loaded into PC at state 0. 

Constant bd is the branch delay of the architecture, i.e. in a basic block, after loading the 

target address of a jump operation into PC, bd–number of control words will be executed 

from that basic block. Value of bd depends on the distance between PC and control word 

register, which is fixed and unique. Usually, this delay is 0 or 1 cycle in NISC. 

In procedure ScheduleFunction (Figure  4.27), the blkList contains the topologically 

ordered list of basic blocks where the last element of the list is the return block. The 

blocks of blkList are processed in reverse order, starting from return block and after 

scheduling each block, the results are added to the fsm. In the main loop of 
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ScheduleFunction (lines 3-8), before scheduling the body of a basic block, the jump 

operation at the end of block is scheduled. The same way that a + operation is mapped to 

an adder or ALU and writes its results to a register or register file, the jump is considered 

an operation that is mapped to address generator and writes its result to the PC register in 

cycle clk. In this way, we can schedule jump the same way that we schedule other 

operations (line 5). In order to make sure that the branch delay of the jump operation is 

filled by other operations in the basic block, we try to schedule the DFG of the basic 

block from cycle clk+bd (line 6). After scheduling each basic block, the new value of clk 

is calculated by decrementing the number of states in the block (line 7). The 

ScheduleBasicBlock and ScheduleOpertion functions are described in Section  4.2.2. After 

scheduling all functions of a program, fsm will contain the final FSM of the design. 

00
01
02
03
04
05
06
07
08

ScheduleFunction(FSM fsm, ordered list of basic blocks blkList)
 clk = 0; 
 bd = branch delay; 
 foreach (blk ∈ reverse of blkList) 
  if (blk has a jump operation) 
   ScheduleOperation(blk.jump, clk, blk.ss, PC); 
  ScheduleBasicBlock(blk, clk+bd); 
  add blk.ss states to fsm; 
  clk = clk – blk.ss.length; 

Figure  4.27. Pseudo code of ScheduleFunction 

4.2.2 Mapping the DFG of the program 
The variable, operation, and interconnect bindings are performed during the schedule 

of each operation. We also allow pre-binding of variables and operations so that the 

designer or other algorithms can control the results (Chapter  Chapter 5). For example, a 

partitioning algorithm may partition the variables and pre-bind them to two memory 

units. 
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Figure  4.28 shows the ScheduleBasicBlock procedure that performs the scheduling 

and binding for each basic block of a CDFG. In the main loop of this function (lines 3-

16), the available output operations, i.e. sub-tree roots that can generate their results at 

clock cycle clk, are collected and sorted based on a priority function, such as operation 

mobility. During scheduling of each of these output operations, some internal outputs 

may be generated. If the schedule of the operation is successful, then the operation is 

removed from the set of sub-tree roots (Roots) and the newly generated internal outputs 

are added to the list in order to be processed later (lines 14-15). In each iteration of the 

loop, the clk is decremented and available output operations are collected and scheduled 

until all sub-trees in the block are processed. 

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

ScheduleBasicBlock(block blk, clock lastClock) 
 Roots = {output operations in blk.DAG}; 
 clk = lastClock; 
 while(Roots ≠ ∅) 
  AvailableOutputs = ∅; 
  foreach (operation op ∈ Root) 
   if (all successor of op are scheduled after clock clk) 
    AvailableOutputs =  AvailableOutputs + {op}; 
  Sort AvailableOutputs by OperationPriorities; 
  foreach (operation op ∈ AvailableOutputs) 
   internalOutputs=∅; 
   if (op.result is not pre-bound to a storage) 
    bind op.result 
   destination dst = storage of op.result 
   if ( ScheduleOperation(op, clock ,blk.ss, dst)) 
    Roots = Roots – {op} + internalOutputs; 
  clk=clk-1; 

Figure  4.28. The ScheduleBasicBlock procedure 

The ScheduleOperation function (Figure  4.29) tries to schedule an operation op so 

that its result is available at dst at clock cycle clk. If op is not pre-bound to a specific 

functional unit, then the list of functional units that can execute op is stored in F and 

sorted by the UnitPriorities (lines 1-4). This priority function depends on the delay of the 

unit as well as the paths from output of the unit to the destination dst. After selecting a 
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functional unit FU, all paths from FU to dst are stored in P and sorted by a PathPriority. 

The timings of FU and a selected path p are calculated so that the output of FU is 

available at dst at clock cycle clk (lines 7-12). If FU and all of the resources on the path p 

are not reserved in the ss.resTable at the corresponding calculated times, then algorithm 

tries to schedule the operands of op by calling the ScheduleOperands function. If the 

schedule of operands succeeds, then selected functional unit FU and path p are reserved 

(operation and interconnect binding) (lines 15-19). We pass a copy of scheduling status 

(copyStatus) to function ScheduleOperands to make sure that original status changes only 

if all operands are successfully scheduled. If scheduling failed after trying all functional 

units, the ScheduleOperation function tries to bind the result of operation to a storage and 

schedule a read from that storage. If the read succeeds, the operation is added to the 

internalOutputs for later processing. 

The ScheduleOperands function (Figure  4.30) schedules the operands of an 

operation op on a selected functional unit FU so that their values are available on 

corresponding input ports of FU at clock cycle clk. If an operand is a variable or a 

constant, then this function tries to schedule a read from the corresponding storage. 

Otherwise, it calls the ScheduleOperation function. The function succeeds only if all 

operands can be scheduled. 

In the ScheduleRead function (Figure  4.31), the best available path that can transfer a 

value from its storage to the specified destination at clock cycle clk is selected and 

scheduled. 
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bool ScheduleOperation(operation op, clock clk, schedule status ss, destination dst) 
 if (op is pre-bound to a functional unit) 
  F = {functional unit to which op is pre-bound}; 
 else 
  F = {functional units that implement op sorted by UnitPriorities}; 
 foreach(FU ∈ F) 
  P = {paths from FU.output to dst sorted by PathPriorities}; 
  foreach(p ∈ P) 
   p.timings.end = clock; 
   calculate p.timings.start; 
   if (resources of p are not reserved in ss.resTable) 
    FU.timing.end = p.timings.start; 
    calculate FU.timing.start; 
    if (FU is not reserved in ss.resTable) 
     copyStatus = ss; 
     if (ScheduleOperands(op, FU.timing.start, copyStatus, FU)) 
      ss = copyStatus; 
      reserve FU and p in ss.resTable; 
      add corresponding MAs to ss.MAs; 
      return TRUE; 
 bind op.result; 
 if (ScheduleRead(op.result, clk, ss, dst)) 
  internalOutputs = internalOutputs + {op}; 
  return TRUE; 
 return FALSE; 

Figure  4.29. The ScheduleOperation function 
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bool ScheduleOperands(operation op, clock clk, schedule status ss, functional unit FU) 
 foreach(operand o ∈ op.operands) 
  destination dst = FU.inputs corresponding to o; 
  if (o is a variable or a constant) 
   if (o is not pre-bound to a storage) 
    bind o to a storage; 
   if (! ScheduleRead(o, clk, ss, dst)) 
    return FALSE; 
  else if (! ScheduleOperation(o, clk, ss, dst)) 
    return FALSE; 
 return TRUE; 

Figure  4.30. The ScheduleOperands function 
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bool ScheduleRead(value v, clock clk, schedule status ss, destination dst) 
 P = {paths from storage of v to dst sorted by PathPriorities}; 
 foreach(p ∈ P) 
  p.timings.end = clk; 
  calculate p.timings.start; 
  if (resources of p not reserved in ss.resTable) 
   reserve p in ss.resTable; 
   add corresponding MAs to ss.MAs 
   return TRUE; 
 return FALSE; 

Figure  4.31. The ScheduleRead function 
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4.3 Other scheduling algorithms 

Because the architecture style of NISC is new, little research has been done on the 

mapping algorithms for NISC. However, some of techniques developed in the areas of 

ASIPs, high level synthesis, and retargetable compilers can be directly or indirectly 

related to NISC. There has been an extensive body of work on scheduling and binding 

algorithms in the area of high level synthesis and retargetable compilers, which we 

review in this section. 

Force directed scheduling (FDS)  [49] [50] is commonly used to solve the timed 

constrained scheduling problem. This algorithm, distributes the execution of similar 

operations in different clock cycles in order to achieve high utilization of functional units 

while meeting the time deadline. Path-based scheduling algorithm  [55] tries to minimize 

the number of clock cycles needed to execute the critical paths that exist in the given 

CDFG. To do so, the algorithm gives emphasis to conditional branching i.e. it starts by 

extracting all possible execution paths from the given CDFG and schedules them 

independently. Then the schedules of different paths are combined to generate the final 

schedule for the whole design. However, the path-based approach restricts the execution 

order of the operations before scheduling. 

List-based scheduling techniques  [19] are used to solve resource constrained 

scheduling problem in which the number of resources of different types are limited. List 

scheduling processes each state sequentially. At each state, it tries to choose the best 

operation from the list of candidate operations, subject to resource constraints. List 

scheduling uses a ready-list, which keeps all nodes that their predecessors are already 

scheduled. The ready-list is always sorted with respect to a priority function. The priority 
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function always resolves the resource contention among operations, i.e. operations with 

lower priority will be deferred to the next or later states. The quality of the results 

produced by a list-based scheduler depends predominantly on its priority function.  

Mobility of the operation, i.e. the difference between ASAP (as soon as possible) and 

ALAP (as late as possible) times, is commonly used as the priority function in many HLS 

systems. Different priority functions and heuristics have been proposed to improve the 

quality of list scheduling. The proposed list scheduling algorithms in  [65] and  [9] uses 

mobility as the primary priority functions. To break the tie among a set of available 

operations with similar mobility, they assign higher priority to those operations that 

contribute to the same output. Before scheduling begins, they analyze the outputs of 

operations in the DFG by constructing a set of trees (cones) that start from output nodes 

as roots. However, they use a conventional scheduler that starts from inputs and proceeds 

forward, and the output trees are only used to break the tie during schedule. A similar 

approach is used in  [21] and  [31] for scheduling on VLIW architectures. Output trees in 

DFG are also used for instruction selection using the maximal-munch algorithm. 

Processing the DFG backward, from outputs towards inputs, has proven to be very 

fruitful. However, this idea has been mainly used in priority functions but not the 

scheduling algorithm itself. 

All of these scheduling algorithms only schedule operations and assume that binding 

is done later. While theoretically it is possible to support multi-cycle and pipelined 

operations in HLS scheduling algorithms, none can consider operation chaining as 

accurate as our algorithm because the information of wire between functional units will 

not available in traditional HLS until after resource and variable binding. Lack of access 
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to wire information also prevents traditional HLS from supporting pipelining and data 

forwarding. Also, all HLS approaches generate normal FSMs and do not support 

pipelined controller the way our algorithm does. 

On the other hand, VLIW and other similar compilation algorithms do not support 

partial forwarding and pipelining. Only one scheduling approach  [8] has considered 

partial data forwarding. However, this approach can only handle direct forwarding paths, 

while ours can support pipelined paths as well. Also, their approach requires the behavior 

of every instruction to be defined in terms of all possible forwarding paths, while in our 

approach; we only describe the structure of architecture and then extract and analyze the 

possibilities during scheduling. Finally, supporting multi-cycle, pipelined, or chained 

operations is outside of the scope of standard compilation algorithms because they do not 

consider the low-level structural details of the architecture. 
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Chapter 5. Low-level 
programming in NISC using C 

Languages such as C are generic enough to cover majority of the application needs, 

but sometimes in applications, the underlying hardware must be controlled directly 

through special registers or instructions. In instruction-based processors, programmers 

use assembly code to perform tasks such as peripheral IO operations, configuring the 

interrupt unit, or use resources with custom functionalities that cannot be expressed in C. 

Since in NISC, the architecture has no predefined instruction-set, it does not have any 

assembly code either. This is specially limiting when an application requires interrupt or 

needs to communicate with other cores in a system. In statically-scheduled architectures, 

use of microcode for low-level programming requires that the programmer also provide 

an accurate cycle-by-cycle schedule of the microcodes. This makes direct use of 

microcodes (a) tedious and error prone, and (b) impractical in C language. This issue has 

not been addressed in the past and all architectures that use microcode for programming 

assume that if low-level programming is needed, it will be done manually. Approached 

such as TIPI do not even have a compiler and assume all programming is done manually. 
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5.1 Motivating example 

Consider Figure  5.1 that shows a sample code for finding the maximum of four 

numbers as well as the corresponding CDFG when compiled on the shown datapath. It is 

clear from the program and the CDFG that: (1) there are too many states in the CDFG 

and therefore the code will take several clock cycles to run on the datapath, and (2) the 

code does not have any parallelism that can be utilized for speeding up the computation. 

 
Figure  5.1. Normal code for finding maximum of four numbers 

If we look at the code for finding maximum of four numbers in Figure  5.1 we can 

see that there are three similar conditional clauses that find the maximum of two 

numbers. We can execute this code much more efficiently if we construct a datapath that 

has a custom functional unit (called Max) for finding maximum of two numbers, as 

shown in Figure  5.2. 

Using the Max FU, we can find the maximum of four numbers in just two clock 

cycles as shown in Figure  5.3. But the question is what should we write in the C code for 
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the NISC compiler to generate such a schedule? Since NISC does not have any 

predefined instruction-set, it also does not have any assembly. Therefore, we can not use 

the assembly to directly program and use the underlying Max FU in the datapath of 

Figure  5.2. Furthermore, any mechanism that provides low-level access in C, should also 

enable the NISC compiler to freely schedule the custom functions along with other 

operations if possible. 

LR

status
address

CW

offset RF

Max Max

Mux2

>

Max

U2U1
 

Figure  5.2. Datapath with custom function unit for finding maximum of two numbers 
Clock MAs 
0 RF(x)=Max(R(a), RF(b)); RF(y)=Max(RF(c), RF(d)); 
1 RF(z)=Max(RF(x), RF(y)); 

Figure  5.3. Finding maximum of four numbers using a custom FU in Figure  5.2 

5.2 Providing low-level programming in NISC 

To support low-level programming in NISC, we introduce the concept of pre-bound 

functions and variables in the NISC compiler. These functions and variables have 

common C syntax but instead of implementing them in the normal way, the compiler 

maps them to specific hardware resources. During code generation, the compiler 

generates proper control bits to access their corresponding hardware resources.  

To better understand the difference between pre-bound functions and normal 

functions, let’s first see how a normal function is executed. Figure  5.4(a) shows the C 

code of a function f() that calls another function Max(). During call, two parameters 
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are passed to Max and then one result is returned. Figure  5.4(b) shows the corresponding 

CDFG of this code, while Figure  5.4(c) shows its stack behavior. As the CDFG shows, in 

the caller function, first the stack must be extended for the return value and the 

parameters, then the parameters are pushed on the stack, and finally the execution flow 

jumps to the beginning of the callee, i.e. Mux_prolog block. In the prolog of the callee, 

the return address and the FP register values are pushed on the stack and the stack is 

extended by incrementing the value of SP. After executing the body of the function and 

writing the return value, the SP and FP register values are restored and the execution flow 

jumps back to the caller. This example shows how normal function calls are 

implemented. It also shows the relatively high overhead of functions calls. 

A pre-bound function is directly mapped to a hardware resource and is treated the 

same as other operations. Therefore, if we assume that the Max function in Figure  5.4(a) 

is a pre-bound function, then we do not need to specify the body of this function and the 

CDFG of the program becomes a lot simpler as shown in Figure  5.5(b). In this case, the 

Max “operation” is treated exactly the same way that the ADD or MUL operations are 

handled. In this way, we can not only directly use a component in the datapath, but also 

will have a more efficient execution since the CDFG is simpler and the Max operation 

can be scheduled in parallel with the rest. 

Figure  5.6 shows the C code and the corresponding CDFG for finding the maximum 

of four numbers using the Max pre-bound function. Compiling this code on the 

architecture of Figure  5.2 will automatically result in the schedule of Figure  5.3. 
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Figure  5.4. Execution of normal function calls 

 
Figure  5.5. Executing a pre-bound function 

 
Figure  5.6. Finding maximum of four numbers using Max pre-bound function 
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Note that pre-bound functions are different from intrinsic functions, commonly used 

in the compilers. Pre-bound functions affect the functionality of the application but have 

no implementation and are treated similar to other operations. Therefore, they can be 

scheduled in parallel with other operations and with each other. On the other hand, the 

intrinsic functions are implemented in the same way as other normal functions, i.e. 

inlined or jumped to. But since the compiler has a built-in knowledge of how the intrinsic 

functions behave, it can optimize them more than normal code. Also, some intrinsic 

functions only provide hints to the compiler (e.g. for optimizations) but have no 

implementation or have no effect on the program.  

5.3 Pre-bound functions in GNR and C 

As we mentioned in Section  Chapter 3, the NISC architecture is described in GNR 

format. In the model of the architecture, we describe pre-bound functions for functional 

units the same way that their operations are defined. The description also maps the 

function output and parameters to the ports of the component and specifies the timing and 

corresponding control bit values. We also specify whether the scheduler can freely move 

the function and schedule it with other operations, or it should preserve the order of the 

function with respect to operations that appear before and after it in the code. For 

example, the Max pre-bound function, discussed in Section  5.2, can be freely moved and 

scheduled with other operations in the program because it does not store any internal state 

or change the state of the architecture. As another example, assume we have a Push and a 

Pop pre-bound function that are mapped to a hardware queue. The hardware 

implementation of these functions changes the state of the architecture, i.e. add a value in 
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the queue or remove one from it. Therefore, the execution order of these functions in the 

code must be preserved by the compiler otherwise the result would be wrong. 

To support pre-bound functions and variables, we added a new tool, 

PreboundCGenerator, to the flow of Figure  2.4. The new flow is shown in Figure  5.7. 

Before compiling the application on the given datapath, the PreboundCGenerator tool 

processes the architecture description and generates a C header (.h) and source (.c) file 

that contains the declarations of the pre-bound variables and functions. For every register 

in the datapath (including registers in the register-file) a variable is declared in the 

generated source file, the function descriptions of the functional units are also translated 

to proper C function declarations. The tool also provides this information to the NISC 

compiler so that it knows which functions and variables are pre-bound to what hardware 

components. The generated source files are included in the application and the 

programmer can use them the same way they are normally used in C. During 

compilation, instead of binding variables to global memory, or stack, they are bound to 

their corresponding registers. Similarly, instead of implementing calls to pre-bound 

functions with jump operations, these calls are treated the same way that for example an 

add or multiply operation is treated. 

 
Figure  5.7. NISC tool flow with pre-binding 

Figure  5.8 shows the GNR of the Max unit shown in Figure  5.2. This description 

defines Max as a hierarchical module and assigns compiler aspect to it. As we explained 
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in Section  3.3, when the compiler loads this component, it uses the information in the 

compiler aspect and will not process the internal netlist of the module. The internal netlist 

specifies the actual implementation of this unit based on the GNR description of other 

components in the library. This information is used by the RTL generator tool. Instead of 

the netlist, we could have a Verilog aspect that directly describes the implementation of 

the component in Verilog HDL. In the compiler aspect of this component, a Function 

(rather than an Operation) is defined that maps the function name Max to the input and 

output ports of the module. The description also specifies that this function has no state 

dependency and hence the compiler can safely move it and schedule it in parallel with the 

rest of the code. 

After running the PreboundCGenerator (Figure  5.7) on the GNR of the description 

of Figure  5.2, it will generate the proper .h and .c files that can be include in the 

application project for using the pre-bound functions. Figure  5.9(a) shows the header file 

(.h) that includes the declaration of the Max pre-bound function. Note that in this file, in 

addition to the Max function, there are two other function declarations that are the same 

as Max but include the instance name of the unit in the datapath. These functions are 

bound to specific instance of the unit. If the Max function is used in the program, then the 

compiler can choose either U1 or U2 units for scheduling the Max pre-bound function. 

Otherwise, if any of the __$U1_Max or __$U2_Max functions are used then the 

compiler will schedule the function on the corresponding component instance. Figure 

 5.9(b) shows the source file (.c) that includes the definition of the pre-bound functions. 

These function definitions are only used to allow the standard C front end of the NISC 

compiler correctly compile the whole program. However, the bodies of these functions 
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are not used by the NISC compiler and will be ignored. The PreboundCGenerator can 

also choose to generate a valid body for the pre-bound functions that describe their actual 

behavior and can be used for debugging or simulation of the C code. 

<Module type="Max"> 
 <Ports> 
  <InPort n="i0" bitWidth="32" /> 
  <InPort n="i1" bitWidth="32" /> 
  <OutPort n="o" bitWidth="32" /> 
 </Ports> 
 <Netlist> 
  <Components> 
   <Instance n="c" type="GreaterThan" lib="Lib" /> 
   <Instance n="m" type="Mux2" lib="Lib" /> 
  </Components> 
  <Connections> 
   <Conn src="" srcPort="i0" dest="c" destPort="i0" /> 
   <Conn src="" srcPort="i1" dest="c" destPort="i1" /> 
   <Conn src="c" srcPort="o" dest="m" destPort="sel" /> 
   <Conn src="" srcPort="i0" dest="m" destPort="i0" /> 
   <Conn src="" srcPort="i1" dest="m" destPort="i1" /> 
  </Connections> 
 </Netlist> 
 <Annot_compiler> 
  <Functions> 
   <Function n="Max" stateDependency="none" delay="0"> 
    <Output port="o"><Type n="int" /></Output> 
    <Input port="i0"><Type n="int" /></Input> 
    <Input port="i1"><Type n="int" /></Input> 
   </Function> 
  </Functions> 
 </Annot_compiler> 
</Module>  

Figure  5.8. GNR of description of Max unit shown in Figure  5.2 
void Max(int, int); 
void __$U1_Max(int, int); 
void __$U2_Max(int, int);  

void Max(int i0, int i1) {return 0;} 
void __$U1_Max(int i0, int i1) {return 0;} 
void __$U2_Max(int i0, int i1) {return 0;}  

(a) .h file (b) .c file 
Figure  5.9. Generated pre-bound C codes 

5.4 Benefits of pre-bound functions and variable 

While providing similar capabilities, our pre-binding approach is more flexible than 

using assembly in instruction based processors. The pre-bound constructs have C syntax 

and can be merged with the rest of the application much easier than assembly code. Also, 

the programmer does not need to worry about the scheduling of these constructs. 
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ASIP approaches such as LISA  [48] capture the description of custom instructions in 

ADL and then generate assembler. Therefore, to access low level resources the program 

should use assembly of custom instructions. In Tensilica  [70], the base processor is 

extended by adding custom instructions. Each custom instruction is defined in their TIE 

proprietary language and must be explicitly used in the C code via special function calls. 

This idea is similar to our pre-bound functions. However, in contrast to our approach, 

Tensilica’s custom instructions (and their corresponding functions) have only one 

possible implementation. They cannot represent several similar resources, or be 

scheduled (and potentially moved) the way pre-bound functions are handled in NISC 

compiler. 

All other statically-scheduled architectures (i.e. microcoded or VLIW) require the 

programmer to explicitly provide the schedule of the microcode or assembly. In NISC, 

the compiler schedules the calls to pre-bound functions and accesses to pre-bound 

variables. Therefore the programmer uses these functions and variables exactly the same 

way that normal C functions and variables are used.  

In NISC, the main goal is to develop the application in an architecture independent 

high-level language (e.g. C) so that it can be mapped on different custom architectures. 

Another benefit of our pre-binding approach is that a C code using pre-bound functions 

or variables can execute on any architecture as long as that architecture contains the 

corresponding hardware resources. In this way, the backward compatibility can be 

maintained at source code level without imposing as tight constraints as backward binary 

compatibility requires. 
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Chapter 6. Interrupt 
handing 

In traditional microcoded processors, the microcode or nanocode was used inside the 

processor to implement the instructions of the instruction-set. In other words, the 

instructions, rather than the microcode, would define the processor’s external behavior 

seen by the programs. The instruction abstraction (a) enables backward binary 

compatibility, (b) simplifies low-level programming through assembly, and (c) defines 

fine-grained intervals where interrupts could be handled by the processor. In contrast, in 

NISC nanocode and in MIMOLA  [63], TIPI  [68], PICO  [36] [61], and ARM OptimoDE 

 [45],  [35] microcode is used instead of instructions to execute the program. In these 

techniques all of the aforementioned benefits of instruction abstraction are lost. In 

embedded and custom processors, backward binary compatibility is not as important as it 

is in the general-purpose processors. However, interrupt and assembly programming are 

necessary features. For example, developing different communication protocols rely on 

interrupts and low-level access to the hardware.  

All approaches that use nanocode or microcode for programming are statically-

scheduled architecture. In statically-scheduled pipelined architectures, different stages of 
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execution of an operation (e.g. read, execute, write-back) are implemented with several 

micro-operations. The overlapping execution stages of different operations are combined 

in micro-instructions which determine the control-word (CW) for each clock cycle. As a 

result, execution of micro-instructions cannot be arbitrarily interrupted; otherwise, the 

interrupt routine may need to store/restore datapath registers in addition to the registers of 

the register-file. A safe and efficient interrupt mechanism is needed in statically-

scheduled pipelined architectures before they can be used in embedded systems. PICO 

and OptimoDE are designed as co-processors only and hence interrupts are assumed to be 

processed by the main processor. MIMOLA and TIPI have not considered interrupt 

problem at all.  

 
Figure  6.1. (a) Sample datapath, (b) sample code 

6.1 Challenge of interrupt support in NISC 

While other microcode based approached focus only on single-cycle operations, in 

NISC operation chaining (sub-cycle operations) and multi-cycle operations are also 

supported. Consider the datapath of Figure  6.1(a) that is used to compile the set of 

expressions shown in Figure  6.1 (b). Depending on the clock frequency of the system and 

the delay of the components, the NISC cycle-accurate compiler can choose to chain two 

operations in one cycle or execute one operation over multiple cycles. Assume that clock 

period of the system is T, delay of ALU1 is d1, and delay of ALU2 is d2. Also assume that 
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ALU2 is slower but consumes less power (d1 < d2). Depending on the values of T, d1, 

and d2 three cases are possible: 

• If d1 < T and d2 < T but T < d1+d2, then each operation must be scheduled in one cycle and 

intermediate data must be stored in the register-file or datapath register r (Figure  6.2(a)).  

• If d1+d2 ≤ T, then two operations can be chained in one cycle and register-file is accessed 

only once for writing back the final results (Figure  6.2(b)). 

• If d1 < T < d2, then the faster ALU1 can be used to execute two operations in two 

consecutive cycles while the slower ALU2 executes the other operation in two cycles 

(Figure  6.2(c)). 

 
Figure  6.2. (a) single-cycle, (b) chained, (c) multi-cycle operations 

As this example illustrates, in NISC the datapath can be utilized very efficiently 

because the compiler has complete control over it. While instruction-set based compilers 

are mainly concerned with performance, the NISC compiler can also consider other 

design parameters such as timing and power consumption of individual datapath 

components. However, as mentioned before, this architectural style introduces new 

challenges for supporting interrupts.  

6.2 Adding interrupt handling to NISC 

In traditional processors, the interrupt is checked between every two instructions. 

The execution flow can be interrupted between instructions because all instructions store 
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their result back to the register-file. Therefore, the interrupt routine may only need to 

store/restore the value of registers in the register-file in its prolog/epilog.  

In NISC, the intermediate results of operation may be stored in the internal registers 

of the datapath. Furthermore, an operation may take more than one cycle (e.g. (Figure 

 6.2(c)) and hence span across multiple CWs. Therefore, in NISC the execution flow 

cannot be interrupted between any two arbitrary CWs. Detecting the dependencies 

between CWs at run time is very difficult (if not impossible). Also, in addition to the 

registers of the register-file, an interrupt routine may need to store/restore the 

intermediate registers of the datapath as well.  

To address this problem, we need to find an easily identifiable location in the 

program where execution flow can be safely interrupted. The boundary of basic blocks is 

a good candidate for this purpose. A basic block is a sequence of operations that always 

execute together. The execution sequence of basic blocks of the program is data or 

control flow dependent. Consequently, every basic block must read its inputs from 

memory or register-file and must write its outputs back to memory or register-file. In 

other words, since execution of operations of a basic block cannot depend on the 

intermediate datapath values of other basic blocks, the interrupt can be safely serviced at 

the end of basic blocks. In fact, one of the goals of NISC is to execute each basic block as 

if it was executed with one custom instruction. Based on this observation, the controller 

of NISC checks for interrupts only when bits corresponding to jump operations are set, 

i.e. at the end of basic blocks. After a jump operation, the execution flow goes to the 

target of the jump or an interrupt routine. In presence of an interrupt, the target of the 

original jump is passed to the interrupt routine as its return address. Note that this scheme 
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also simplifies the implementation of atomic functionalities because the programmer can 

now count on atomic execution of basic blocks. 

 
Figure  6.3. Updated controller for supporting interrupt 

Figure  6.3 shows the updated controller of Figure  2.2 for supporting interrupt. In this 

new controller, an interrupt bit indicates whether there is a pending interrupt. The AND 

gate in the AddressGenerator causes the execution flow to jump to the interrupt service 

routine (ISR) only if (a) there is a pending interrupt, (b) end of basic block has reached, 

i.e. a jump operation is being executed, and (c) the jump is not because a call operation. 

To better understand how the interrupts are handled in NISC, we first need to 

understand how a function call is executed. Figure  6.4 shows the CDFG and execution 
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flow when a function is called. In the caller, first the parameters of the callee function are 

pushed on the stack and then execution flow jumps to the beginning of the callee function 

(e.g. basic block BB0 in Figure  6.4). A call operation is the same as a jump, but it also 

loads the next PC value in the LR register before jumping to the target address. In this 

way the LR register holds the return address immediately after a call operation. Every 

function has at least three basic blocks: (i) a prolog block that saves the return address 

(i.e. the LR register value) on the stack as well as the value of registers that will change in 

the function, (ii) a block as the starting point of the main body of the function, and (iii) an 

epilog block that restores the value of modified registers and jumps back to the return 

address. After the call, the caller function (basic block BB1) pops back the parameters 

and return value from the stack before it continues its execution. 

BB0:
...
//push params
CALL(f1);

BB1:
//pop params
...

f1_prolog:
PUSH(LR);
//push regs;

f1_body:
...

f1_epilog:
//pop regs;
t1=POP(LR);
JUMP(t1);

PC=f1_prolog;
LR=BB1;

PC=BB1;  
Figure  6.4. CDFG of a typical function call 

The interrupt is very similar to a function call, but rather than using a call operation 

in the program, the jump to the ISR is initiated in the controller when the interrupt signal 

becomes ‘1’. Figure  6.5 shows how ISR is executed at the end of a basic block when 

interrupt signal is enabled. The ISR has no parameters and does not return any value, 

therefore, there is no need to parameter push/pop in the main execution flow. The 

modified controller structure in Figure  6.3 also guarantees that the target of the jump 
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address is stored in the LR before going to ISR. After ISR is finished, it returns to the 

block where the original jump was supposed to go to.  

 
Figure  6.5. Interrupt exaction after a jump operation  

BB0:
...
//push params
CALL(f1);

BB1:
//pop params
...

f1_prolog:
PUSH(LR);
//push regs;

f1_body:
...

f1_epilog:
//pop regs;
t1=POP(LR);
JUMP(t1);

PC=f1_prolog;
LR=BB1;

PC=BB1;

ISR_prolog:
PUSH(LR);
//push regs;

ISR_body:
...

ISR_epilog:
//pop regs;
t1=POP(LR);
JUMP(t1);

PC=ISR_prolog;
LR=f1_body;

PC=f1_body;

interrupt

 
Figure  6.6. Interrupt execution after a call operation 

Since both interrupt service routine and the normal function call depend on the value 

LR register, we should make sure that these two mechanisms do not interfere with each 

other. To simplify the implementation, if interrupt is enabled right before a function call, 

we first execute the call and then process interrupt. In this way, the prolog of the function 

stores its return address and will no longer need the value of LR. Then the interrupt 

mechanism in the controller can safely overwrite the value of LR. After interrupt handler 

is finished, the execution flow returns back to the called function. This mechanism is 
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illustrated in Figure  6.6. This simplification minimizes the required changes to the 

controller for implementing interrupts. Additionally it enables (a) use of normal function 

calls in the ISR, and (b) support of nested interrupts.  

Usually a processing element must support multiple interrupts. The interrupt signals 

are not synchronized with the clock and may come at any time. Furthermore, an interrupt 

signal may be deactivated before it is processed. Therefore, we need a hardware 

mechanism to catch all interrupts when they come and also can handle multiple 

interrupts. One option is to add such mechanism to the controller; but this jeopardizes the 

NISC philosophy. In NISC we want to be able to customize and remove as much unused 

resources as possible. Since the designer can freely customize the datapath, we put the 

interrupt catch mechanism in an interrupt unit (IU) in the datapath and connect it to the 

interrupt port of the controller. If no interrupt support is needed in the design, the IU is 

removed from datapath and the interrupt port of controller is connected to “0” 

(grounded). When we connect the interrupt port to “0”, the AND gate and the 

multiplexers who are controlled with this AND gate will be removed during logic 

optimization. In this way, the controller of Figure  6.3 becomes exactly the same as the 

original controller of Figure  2.2. With this approach, the interrupt handling hardware is 

added to the design only if the interrupt support is required. In the next section, the details 

of the IU and its usage are explained. 

6.3 The interrupt unit (IU) 

Figure  6.7 shows the internal implementation of Interrupt Unit (IU). Each interrupt 

connected to the asynchronous-set port of a flip-flop which latches that interrupt. The 

flip-flop also has a synchronous-reset that allows the programmer to clear the flip-flop by 
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provide an interrupt number on the port i and setting the clearInterrupt control port. 

There is also a mask register that has one bit for every interrupt and if the bit is 0 then the 

corresponding interrupt is disabled. Therefore, writing an integer 0 in the mask disables 

all interrupts. A priority encoder determines the interrupt number of the highest priority 

activated interrupt. Finally, an OR gate generates a notification signal for the controller 

indicating that at least one interrupt is available for processing. The input (i) and output 

(o) ports of the UI are connected to the datapath.  
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Figure  6.7. The structure of Interrupt Unit 

Figure  6.8 shows the GNR code of the IU that has thee pre-bound functions, i.e. 

setMask, clearInterrupt, and interruptNumber. The component has a set of input, output 

and control ports. Function descriptions specify the mapping between their inputs/output 

and the input/output ports of the component. The description also determines the control 

values that must be assigned to corresponding control ports for execution of the function. 

The functions in this example indicate stateDependency=”all”. This means that the 
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compiler must preserve the order of operations before and after these functions during 

scheduling. These pre-bound functions provide all the means for directly controlling the 

IU from C code. 

<FU type="InterruptUnit"> 
 <Params> 
  <Param n="BIT_WIDTH" /> 
  <Param n="INTERRUPT_COUNT" /> 
  <Param n="DELAY" val="0"/>   
 </Params> 
 <Ports> 
  <Clock n="clk" bitWidth="1" /> 
  <InPort n="reset" bitWidth="1" /> 
  <CtrlPort n="clearInterrupt" default="0" bitWidth="1" /> 
  <CtrlPort n="loadMask" default="0" bitWidth="1" /> 
  <OutPort n="interrupt2C_ntroller" bitWidth="1" /> 
  <InPort n="interrupts" bitWidth="{@INTERRUPT_COUNT}" /> 
  <InPort n="i" bitWidth="{@BIT_WIDTH}" /> 
  <OutPort n="o" bitWidth="{@BIT_WIDTH}" /> 
 </Ports> 
 <Annot_verilog><!--determines the implementation info. --></Annot_verilog> 
 <Annot_compiler> 
  <Functions> 
   <Function n="setMask" delay="{@DELAY}" stateDependency="all"> 
    <Input port="i"><Type n="unsigned char" /></Input> 
    <Ctrl port="loadMask" val="1" /> 
   </Function> 
   <Function n="clearInterrupt" delay="{@DELAY}" stateDependency="all"> 
    <Input port="i"><Type n="unsigned char" /></Input> 
    <Ctrl port="clearInterrupt" val="1" /> 
   </Function> 
   <Function n="interruptNumber" delay="{@DELAY}" stateDependency="all"> 
    <Output port="o"><Type n="unsigned char" /></Output> 
   </Function> 
  </Functions> 
 </Annot_compiler> 
</FU>  

Figure  6.8. The GNR code for an Interrupt Unit (IU) 

As we explained in Section  5.3, the PreboundCGenerator tool generates a head code 

that includes the declaration of the pre-bound functions in the GNR. Since the pre-bound 

functions of the IU all have state dependency, they can be used only for specific 

component instance. In NISC, we define a main interrupt handler routine that is called for 

all interrupts. The typical C code of this function is shown in Figure  6.9. in the 

interruptHandlerMain function, the pre-bound functions are used to control the IU. In this 
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function first the current interrupt number is read, and then all interrupts are disabled by 

setting the mask to 0. After handling an interrupt, its corresponding latch in the IU is 

cleared and all interrupts are enabled again by setting all bits of the mask register to 1.  

void interruptHandlerMain() 
{ 
 int iNum = __$IU_interruptNumber(); 
 __$IU_setMask(0); 
 //handling the interrupt 
 switch(iNum) { 
  case 0: /*handling interrupt 0*/ break; 
  case 1: /*handling interrupt 1*/ break; 
   ... 
 } 
 __$IU_clearInterrupt(iNum); 
 __$IU_setMask(-1); 
}  

Figure  6.9. Sample C code for using pre-bound functions of IU 
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Figure  6.10. Sample datapath for pre-binding 

Figure  6.10 shows an example of using the IU in a datapath. In any case, each bit of 

the interrupt port of IU is connected to the interrupt signals and its interrupt2Controller 

port is connected to the interrupt port of the controller. The input / output ports of IU (i.e. 

ports i and o) are connected to the datapath. The control ports of the IU, i.e. loadMask 
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and clearInterrupt are connected to control word. Whenever a pre-bound function is 

used, the compiler determines the correct values of the control signals and schedules 

them in proper clock cycle. 

6.4 Analysis of NISC interrupt handling approach 

So far we showed how NISC handles interrupts in between basic blocks of the 

program. The only concern is that servicing the interrupt only between basic blocks may 

increase the overall interrupt service delay if the basic blocks are very large. There are 

two contributing factors to the interrupt service delay: (1) interrupt latency, i.e. the time 

between when the interrupt is activated and when the execution flow is transferred to the 

interrupt service routine (ISR); and (2) the delay of ISR itself, i.e. the time it takes to 

execute the code in the ISR.  

In our proposed approach, the size of basic blocks in the running application can 

affect the interrupt latency. To examine this effect, we ran a series of embedded 

benchmarks on a generic architecture (GN) shown in Figure  6.11. The benchmarks 

include qsort, dijkstra, sha, adpcm.coder, adpcm.decoder and crc32 from MiBench (the 

free version of EEMBC embedded benchmarks available at  [40]), and a fixed-point Mp3 

decoder (more than 10,000 lines of C code available at  [42]). We generated the RTL 

Verilog code of the design and used Xilinx ISE 8.1 toolset for simulation and synthesis of 

the results. We synthesized the GN (Figure  6.11) on a Xilinx Virtex4 (90-nm) FPGA 

package and achieved a clock frequency of 80 MHz. The Xilinx toolset also provides a 

soft-core 32-bit RISC processor (MicroBlaze) that is already optimized Xilinx 

technology. On a Vertix4 FPGA package, MicroBlaze runs at 105 MHz. MicroBlaze core 

comes with specific fine-grained timing constraints that direct the synthesis tool to 
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achieve the highest possible clock frequency. For synthesizing GN we only used a 

general clock constraint and we expect that the clock frequency of GN can be further 

improved by using more specific constraints. In any case, the achieved 80 MHz clock 

frequency for GN seems to be reasonable enough to be used in our calculations. 

 
Figure  6.11. A generic NISC Architecture (GN) used for analyzing size of basic blocks 

Figure  6.12 shows the distribution of number of basic blocks that take less than 100 

clock cycles to execute. The first column in this figure shows the number of basic blocks 

that take 0 to 9 cycles to execute; the second column shows the number of basic blocks 

that take 10 to 19 cycles, and so on. It is clear that in these benchmarks, the majority of 

basic blocks take between 10 to 30 cycles. In other words, if we service interrupts in 

between basic blocks, most of the time the interrupt latency will be less than 0.5 µ sec 

(=50 cycles / 80 MHz).  

Figure  6.13 shows the distribution of number of basic blocks that are longer than 100 

cycles. Overall, there are 13 basic blocks in all of the benchmarks that are longer than 

100 cycles. In general, although large basic blocks are rare in applications, in cases where 

interrupt delay is critical, the compiler can break large basic blocks into a sequence of 

smaller blocks whose size is determined by the frequency of the interrupts or the upper 
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bound of their delay. Note that large basic blocks are typically the result of techniques 

that improve the operation-level parallelism of the code. The compiler can break large 

blocks into smaller ones after or during operation scheduling without negatively affecting 

the utilization of parallelism. Compiler can also enable interrupt handling after fall-

through basic blocks (not ending with a jump) by adding a jump to the next block. 
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Figure  6.12. Distribution of basic blocks shorter than 100 cycles 
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Figure  6.13. Distribution of basic blocks longer than 100 cycles 

A more important factor in servicing interrupts is the ISR execution delay. We ran 

the aforementioned benchmarks on both MicroBlaze and GN to compare their 

performance. On average, the benchmarks ran 5 times faster on GN than MicroBlaze. We 



 91 

believe the performance of a typical ISR routine benefits similarly from execution on 

GN. Additionally, in NISC, we can customize the architecture to further improve the 

performance of particular piece of code, including an ISR. 

The above experiments show that by processing interrupts in between basic blocks, 

NISC and other statically-scheduled architectures can handle interrupts almost as 

efficiently as their RISC counterparts.  
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Chapter 7. Communication 
case studies 

In previous chapters we addressed different issues for designing a single IP block 

using NISC Technology. However, rarely a single component is enough for a real life 

application. Therefore, we have to make sure NISC based IPs can communicate with the 

rest of the system. In this chapter, we show that solving the main three problems; i.e. 

compilation, low-level programming, and interrupt support; is necessary and enough for 

supporting any communication protocol, once we know how to model cycle-accurate 

behaviors in NISC. This is an important benefit of NISC approach (and this thesis) 

because we do not need to change the controller, the compiler, or even the C language to 

support any communication scheme. In the rest of this chapter, we explain how to model 

cycle-accurate behaviors in NISC. We show how any communication protocol can be 

added to a NISC component and illustrate the approach on different typical 

communication schemes.  

As size of transistors shrink, delay and power of interconnects become more 

dominant. Therefore, communication among components in a system becomes more 

costly. To reduce communication cost, designers must explore different communication 
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architectures and protocols to find the best combination for a particular application. In 

such design methodology, the processing elements (IPs) must be flexible enough to adapt 

to different communication paradigms (i.e. architecture and protocol). Such flexibility is 

also the key feature for enabling IP reuse across different platforms. Therefore, it is 

important that we do not fix the communication protocol of NISC components and be 

able to support any possible communication scheme. 

Communication protocols are often defined by an accurate timing diagram of events 

on a set of involved signals. Both sender and receiver must comply with the required 

events and their timing in order to successfully communicate. For IPs described at 

Register-Transfer-Level (RTL), the timing of internal behavior of the IP is completely 

known for the designer. Therefore, the communication protocol can be combined with the 

description of the IP.  

However, the problem becomes more challenging in design methodologies that use 

un-timed high-level languages (e.g. C) to generate the RTL description automatically. In 

such methodologies, the IP behavior is un-timed and hence, it is difficult to combine it 

with the timed behavior of a communication interface.  

In the processor domain, this problem is solved by adding a Communication 

Interface (CI) unit to the processor architecture, and programming it in low-level 

assembly language using IO instructions. One problem with this approach is that the IO 

instructions (and hence the communication protocol) is tightly integrated in the 

processor’s instruction decoder, controller, and its pipeline. Therefore, changing the 

communication protocol requires complex changes in the processor. On the other hand, 

this approach is not directly applicable to C-to-RTL methodologies because they do not 
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have any instruction-set or assembly language. To address this issue, some synthesis tools 

 [39] [61] limit the interfaces to simple queues and registers, and require special variable-

naming convention in the C code. Other synthesis tools  [23], seek the solution in going 

beyond the C language and using SystemC for describing the interfaces. This requires 

relatively significant modification in the code. Furthermore, synthesizing SystemC is 

more complex and is possible for only a very limited subset. Enforcing the synthesizable 

subset is very challenging as well. Ideally, the goal is to develop IPs in a high-level 

language and easily connect them to any communication protocol. In this chapter, we 

show how NISC Technology can be used to achieve this goal without requiring any 

extension to the C language and merely relying on the solutions presented in the previous 

chapters.  

7.1 Adding a communication protocol to NISC 

On-chip communication protocols differ from each other based on the underlying 

network topology and the way they handle synchronization, arbitration and data transfer. 

Synchronization is referred to the mechanism used by producer to notify the consumer 

about data being ready. Synchronization is usually carried out through interrupt or polling 

flags. Arbitration means how to resolve conflicting requests for shared communication 

resources. Prioritizing the requests or time-multiplexing them are two well-known 

arbitration mechanisms. There are different ways for transferring data: commonly used 

methods include memory-mapped, DMA and direct transfer.  

To add any communication protocol to a NISC component, we partition it into two 

parts: (a) a synchronous part that must be timed, and (b) an asynchronous part that can be 

un-timed. We describe the timed part of the protocol in RTL and model the un-timed part 
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in C. As Figure  7.1 illustrates, the un-timed part of the protocol uses pre-bound functions 

to reference (i.e. control or poll) the timed behavior; and the timed part of the protocol 

uses interrupt to notify the un-timed behavior about and event.  

 
Figure  7.1. dividing a protocol to un-timed and timed behaviors 
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Figure  7.2. Software and hardware architecture of an IP 

Figure  7.2 shows the software and hardware architecture of two IPs plugged into a 

network. The software part includes the behavior of the application, communication 

layers and the CI driver. In general, communication layers are used to properly assemble 

or disassemble packets of data. Depending on the complexity of the communication 

protocol, size and complexity of the communication layer varies.  
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Both software and hardware must follow a particular protocol before an IP can be 

plugged to a new network. On the hardware side the CI unit is replaced with the new one, 

while on the software side the communication layers and CI driver must be updated. If 

communication layers are properly used to separate the application from the driver, then 

the application remains intact. Otherwise, the application must also be modified.  

7.2 Case studies: communication interfaces for NISC 

To add a communication interface to a NISC, we first need to identify the 

synchronous and asynchronous parts of a given protocol. Then, we implement the 

synchronous part in HDL languages, and the asynchronous part in software. The software 

and hardware parts are ultimately integrated using pre-bound functions. This section 

shows the concept using three examples: In the first example, a simple point-to-point 

single-word interface is designed. In the second and third examples interface of shared 

queue and bus are designed, respectively. In the first two examples, the protocol has not 

specific synchronous part and therefore, there is not need to specify anything in HDL and 

we can just use the pre-bound functions to control the underlying hardware. In the last 

example, the protocol involves cycle-by-cycle behavior as well. This behavior is modeled 

in standard HDL (in our case Verilog). The software uses pre-bound functions to control 

the underlying hardware; and the hardware uses interrupt to notify the software about its 

status.   

7.2.1 Point-to-point single-word interface 
The simplest way of communicating between two IP is through a register. To 

communicate correctly, the producer and consumer must synchronize with each other 

when a data is placed in the shared register or when it is consumed. To do so, one well-
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known way is to use Ready and Ack signals: the producer places the data into the register 

and notifies the consumer by raising the Ready signal. The consumer reads the data and 

raises the Ack signal. Once the producer receives the acknowledgement, it lowers the 

Ready signal. Next, the consumer lowers the Ack signal to indicate the end of 

communication. If more than one word must be transferred, the same sequence of signals 

is repeated for each word. This protocol is called double-handshake because producer and 

consumer synchronize with each other once before and once after transferring data. 

Since, this protocol is asynchronous, producer and consumer may operate at two different 

clock frequencies. Such asynchronous protocol can be used for communication between 

voltage and frequency islands  [5] designed to reduce power consumption. Since this 

protocol is asynchronous, it can be completely described in software. 

Figure  7.3 shows the hardware block diagram of the send and receive 

communication interfaces. The send CI has two registers that store the values of Data and 

Ready signals. The input signals of these register are connected to the IP. The receive CI 

has only one register that stores the value of the Ack signal. 

  
Figure  7.3. Block diagram of point-to-point single-word CIs (send and receive) 
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Figure  7.4 and Figure  7.5 show the GNR of the CI components in the producer and 

consumer components, respectively. These modules must be instantiated in the 

corresponding component and properly connected to the internal datapath and external 

ports of the architecture. Each CI provides a set of pre-bound functions for accessing the 

Data, Ready, and Ack values. Note that the write functions, i.e. writeData, writeReady, 

and writeAck write a value to a register, therefore they are defined as pipelined operations 

with 1 stage. This way the compiler correctly schedules these pre-bound functions.  

<Module type="SingleWordProducerCI"> 
 <Ports> 
  <Clock n="clk" bitWidth="1" /> 
  <InPort n="iAck" bitWidth="1" /> 
  <OutPort n="oAck" bitWidth="1" /> 
  <CtrlPort n="LoadReady" bitWidth="1" default="0" /> 
  <InPort n="iReady" bitWidth="1" /> 
  <OutPort n="oReady" bitWidth="1" /> 
  <CtrlPort n="LoadData" bitWidth="1" default="0" /> 
  <InPort n="iData" bitWidth="32" /> 
  <OutPort n="oData" bitWidth="32" /> 
 </Ports> 
 <Netlist> 
  <Components> 
   <Instance n="Data" type="Register" lib="MainLib"/> 
   <Instance n="Ready" type="Register" lib="MainLib"/> 
  </Components> 
  <Connections> 
   <Conn src="" srcPort="iAck" dest=" " destPort="oAck" /> 
   <Conn src="" srcPort="LoadReady" dest="Ready" destPort="load" /> 
   <Conn src="" srcPort="iReady" dest="Ready" destPort="i" /> 
   <Conn src="Ready" srcPort="o" dest="" destPort="oReady" /> 
   <Conn src="" srcPort="LoadData" dest="Data" destPort="load" /> 
   <Conn src="" srcPort="iData" dest="Data" destPort="i" /> 
   <Conn src="Data" srcPort="o" dest="" destPort="oData" /> 
  </Connections> 
 </Netlist> 
 <Annot_compiler> 
  <Functions> 
   <Function n="readAck" stateDependency="none" delay="0"> 
    <Output port="oAck"><Type n="int" /></Input> 
   </Function> 
   <Function n="writeReady" stateDependency="all" stages="1" delay="0"> 
    <Input port="iReady"><Type n="int" /></Input> 
    <Ctrl port="LoadReady" val="1" /> 
   </Function> 
   <Function n="writeData" stateDependency="all" stages="1" delay="0">  
    <Input port="iData"><Type n="int" /></Input> 
    <Ctrl port="LoadData" val="1" /> 
   </Function> 
  </Functions> 
 </Annot_compiler> 
</Module>  

Figure  7.4. GNR of single word point-to-point CI for producer component 
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Assuming that the instance name for CI component in the producer and consumer 

datapaths is ci, the PreboundCGenerator tool generates __$ci_readAck, 

__$ci_writeReady, and __$ci_writeData pre-bound functions for the producer 

side; and __$ci_writeAck, __$ci_readReady, and __$ci_readData for the 

consumer side. 

<Module type="SingleWordConsumerCI"> 
 <Ports> 
  <Clock n="clk" bitWidth="1" /> 
  <CtrlPort n="LoadAck" bitWidth="1" default="0" /> 
  <InPort n="iAck" bitWidth="1" /> 
  <OutPort n="oAck" bitWidth="1" /> 
  <InPort n="iReady" bitWidth="1" /> 
  <OutPort n="oReady" bitWidth="1" /> 
  <InPort n="iData" bitWidth="32" /> 
  <OutPort n="oData" bitWidth="32" /> 
 </Ports> 
 <Netlist> 
  <Components> 
   <Instance n="Ack" type="Register" lib="MainLib"/> 
  </Components> 
  <Connections> 
   <Conn src="" srcPort="LoadAck" dest="Ack" destPort="load" /> 
   <Conn src="" srcPort="iAck" dest="Ack" destPort="i" /> 
   <Conn src="Ack" srcPort="o" dest="" destPort="oAck" /> 
   <Conn src="" srcPort="iReady" dest="" destPort="oReady" /> 
   <Conn src="" srcPort="iData" dest="" destPort="oData" /> 
  </Connections> 
 </Netlist> 
 <Annot_compiler> 
  <Functions> 
   <Function n="writeAck" stateDependency="all" stages="1" delay="0> 
    <Input port="iAck"><Type n="int" /></Input> 
    <Ctrl port="LoadAck" val="1" /> 
   </Function> 
   <Function n="readReady" stateDependency="none" delay="0"> 
    <Output port="oReady"><Type n="int" /></Input> 
   </Function> 
   <Function n="readData" stateDependency="none" delay="0"> 
    <Output port="oData"><Type n="int" /></Input> 
   </Function> 
  </Functions> 
 </Annot_compiler> 
</Module>  

Figure  7.5. GNR of single word point-to-point CI for consumer component 

Figure  7.6(a) and (b) show driver codes of the send and receive CIs in the producer 

and consumer IPs respectively. In the send driver, line (3) loads the data into Data 
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register through pre-bound function __$ci_writeData(). Then, it writes value “1” 

into register Ready through pre-bound function __$ci_writeReady(1). Next, in line 

(5), it waits until Ack signal become “1”. In line (6), signal Ready is lowered by writing 

value “0” into the Ready register. Similarly, the receive driver (shown in Figure  7.6(b)) 

follows the protocol via calling pre-bound functions __$ci_writeAck(), 

__$ci_readReady(), and __$ci_readData().The NISC cycle-accurate 

compiler uses the CI information captured in GNR to directly control the underlying 

hardware via C description. In this way, the C description of IP can be easily combined 

with the C description of the communication protocol to generate the correct RTL. 
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void send(int data) 
{ 
 __$ci_writeData(data); 
 __$ci_writeReady(1); 
 while(__$ci_readAck()==0); 
 __$ci_writeReady(0); 
 while(__$ci_readAck()==1); 
} 
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3 
4 
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int receive() 
{ 
 while(__$ci_readReady()==0); 
 int data = __$ci_readData(); 
 __$ci_writeAck(1); 
 while(__$ci_readReady()==1); 
 __$ci_writeAck(0); 
} 

(a) (b) 
Figure  7.6. (a) send, (b) receive driver code for point-to-point single-word CIs 

 

The protocol of this section has a high latency due to the need for handshaking for 

each word. Additionally, if one of the parties is significantly slower, the other one will 

also be slowed down during the transaction. To address this issue often a queue is used to 

buffer the data, as shown in the next section. 

7.2.2 Shared queue interface 
Figure  7.7 shows the block diagram of two IPs communicating through a shared 

queue. The queue has Push, Pop, Datain, Dataout, and IsEmpty ports that are connected to 

send and receive CIs. When Push signal is “1”, one word is pushed into the queue, and 

when Pop signal is “1”, one word is popped from the queue. The IsEmpty signal becomes 
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“1” when the queue is empty. The queue may have two clocks in order to push and pop at 

two different clock frequencies. In this protocol, the producer pushes the data into the 

queue and the consumer pops it from the queue. The parties can use queue status 

(IsEmpty signal) for synchronization between them. Since no additional signals are 

necessary for synchronization, the send and receive CIs (shown in Figure  7.7) do not 

contain any registers. The CI components are in fact place holders in the GNR 

description of each IP that provide the description of pre-bound functions and act as a 

proxy for controlling the queue. In general, a proxy component can enable the NISC 

compiler to control a component that is outside of the datapath of a NISC component. 

 
Figure  7.7. Block diagram of point-to-point queue-based CIs (send and receive) 

Figure  7.8 and Figure  7.9 show the GNR description the queue CIs for producer and 

consumer, respectively. Each component provides pre-bound functions for push/pop or 

reading the status of the queue. Note that since push and pop are clocked operations, the 

corresponding pre-bound functions are defined as pipelined with one stage. Figure 

 7.10(a) and (b) show the send and receive drivers. The send driver first waits until the 

queue is empty of any previous data (line 3). Then, it consecutively pushes N words into 

the queue. On the receiver side, the driver receives N words in a loop (lines 3-6) by 

popping from the queue. If the sender has slower clock frequency than the receiver, then 

the queue may become empty in the middle of a transaction. In such case, the receiver 

must wait (line 4 of Figure  7.10(b)) until the sender pushes more data into the queue. 
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<Module type="QueuePrcducerCI"> 
 <Ports> 
  <Clock n="clk" bitWidth="1" /> 
  <ControlPort n="iPush" bitWidth="1" /> 
  <OutPort n="oPush" bitWidth="1" /> 
  <InPort n="iIsEmpty" bitWidth="1" /> 
  <OutPort n="oIsEmpty" bitWidth="1" /> 
  <InPort n="iData" bitWidth="32" /> 
  <OutPort n="oData" bitWidth="32" /> 
 </Ports> 
 <Netlist> 
  <Components></Components> 
  <Connections> 
   <Conn src="" srcPort="iData" dest="" destPort="oData" /> 
   <Conn src="" srcPort="iPush" dest="" destPort="oPush" /> 
   <Conn src="" srcPort="iIsEmpty" dest="" destPort="oIsEmpty" /> 
  </Connections> 
 </Netlist> 
 <Annot_compiler> 
  <Functions> 
   <Function n="push" stateDependency="all" stages="1" delay="0"> 
    <Input port="iData"><Type n="int" /></Input> 
    <Ctrl port="iPush" val="1" /> 
   </Function> 
   <Function n="isEmpty" stateDependency="none" delay="0"> 
    <Output port="oIsEmpty"><Type n="int" /></Input> 
   </Function> 
  </Functions> 
 </Annot_compiler> 
</Module>  

Figure  7.8. GNR of point-to-point queue-based CI for producer component 

<Module type="QueueConsumerCI"> 
 <Ports> 
  <Clock n="clk" bitWidth="1" /> 
  <ControlPort n="iPop" bitWidth="1" /> 
  <OutPort n="oPop" bitWidth="1" /> 
  <InPort n="iIsEmpty" bitWidth="1" /> 
  <OutPort n="oIsEmpty" bitWidth="1" /> 
  <InPort n="iData" bitWidth="32" /> 
  <OutPort n="oData" bitWidth="32" /> 
 </Ports> 
 <Netlist> 
  <Components></Components> 
  <Connections> 
   <Conn src="" srcPort="iData" dest="" destPort="oData" /> 
   <Conn src="" srcPort="iPop" dest="" destPort="oPop" /> 
   <Conn src="" srcPort="iIsEmpty" dest="" destPort="oIsEmpty" /> 
  </Connections> 
 </Netlist> 
 <Annot_compiler> 
  <Functions> 
   <Function n="pop" stateDependency="all" stages="1" delay="0> 
    <Output port="iData"><Type n="int" /></Output> 
    <Ctrl port="iPop" val="1" /> 
   </Function> 
   <Function n="isEmpty" stateDependency="none" delay="0"> 
    <Output port="oIsEmpty"><Type n="int" /></Input> 
   </Function> 
  </Functions> 
 </Annot_compiler> 
</Module>  

Figure  7.9. GNR of point-to-point queue-based CI for consumer component 
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void send(int N, int* data) 
{ 
 while(__$ci_isEmpty()==1); 
 for(i=0;i<N; i++) 
  __$ci_push(data[i]); 
} 

1 
2 
3 
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5 
6 
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void receive(int N, int* data) 
{ 
 for(i=0;i<N; i++)  
  while(__$ci_isEmpty()==1); 
  data[i++] = __$ci_top(); 
  __$ci_pop(); 
} 

(a) (b) 
Figure  7.10. (a) send, (b) receive driver code for point-to-point queue-based CIs 

 
The queue protocol is considered a non-blocking protocol because producer can 

resume its computation without waiting for the consumer to receive the data. This 

improves the performance of the producer IP. In general, point-to-point communications 

are used when each IP communicates with one or a few other IPs. To communicate with 

more IPs, shared buses may be used.   

7.2.3 Double-Handshake bus interface 
Suppose that we have a double-handshake shared bus that allows transmission of 

variable size packets in a non-blocking message-passing fashion. Figure  7.11 shows the 

block diagram of two IPs communicating through such shared bus. On the producer side, 

the CI stores the data in a queue and then requests the bus from arbiter. After getting bus 

grant, the CI places the consumer address on the AddrBus and raises the Ready signal. 

Once the Ack signal becomes “1”, the producer CI puts one word per clock cycle on the 

DataBus. After sending the entire data, the CI lowers the Ready signal and releases the 

bus for the next communication. On the consumer side, the CI stores the data in a queue 

and interrupts the consumer IP. The timing diagram of this protocol is shown in Figure 

 7.12. The arrows show the sequence of the events. 
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Figure  7.11. Block diagram of shared-bus CIs (send and receive) 

 
Figure  7.12. Timing diagram of the example bus protocol 

This protocol is considered synchronous because it must transfers one word per cycle 

without any handshaking for each individual word. Implementing synchronous protocols 

are not possible in software, because software cannot guarantee the required timing. 
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Therefore, the protocol is partitioned into an asynchronous part handled by software and 

a synchronous part managed by Finite State Machines (FSM) inside CIs. Figure  7.13 

shows the send and receive state machines. The send and receive FSMs are very small 

with five and four states, respectively. The FSM inside each CI will be implemented in 

the RTL description of the CI component. The asynchronous part of the protocol in 

software and its synchronous part in hardware are linked to each other via the pre-bound 

functions in GNR. The CI on the producer side provides four pre-bound functions that 

control the signals between the datapath and CI (see Producer IP in Figure  7.11). The pre-

bound functions include: __$ci_isBusy(),__$ci_start(), __$ci_push(), 

and __$ci_setAddr(). The CI on the consumer side provides four pre-bound 

functions that control the signals between the datapath and CI (see Producer IP in Figure 

 7.11). The pre-bound functions include: __$ci_isEmpty(), __$ci_pop(), 

__$ci_top(), and __$ci_done(). The interrupt signal of this CI is connected to 

controller in the datapath of consumer IP.  

Figure  7.14 shows the drivers of this protocol. The send driver (Figure  7.14(a)) waits 

until the CI is done sending any previous message (line 4). Then, it loads the Addr 

register with the receiver address. Next, it pushes N words into the queue (lines 6-7) and 

issues the Start command (line 8). On the consumer side, first the CI receives all data in 

every cycle and then notifies the IP via interrupt. Therefore the, the receiver driver is 

written as an interrupt routine (Figure  7.14(b)). For each interrupt, the driver pops the 

data from the queue and issues the Done command. The mapping between the pre-bound 

functions and ports of each CI are shown in Figure  7.15. 
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Figure  7.13. FSMs inside (a) send and (b) receive CIs 
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void send(int N, int* data, int recAddr) 
{ 
 while(__$ci_isBusy()==1); 
 __$ci_setAddr(recAddr); 
 for(int i=0; i<N;i++) 
  __$ci_push(data[i]); 
 __$ci_start(); 
} 
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interrupt Receive (){ 
 disable interrupt 
 buffer[0] = top(); 
 int i=1; 
 while (__$ci_isEmpty()==0) 
   __$ci_pop(); 
   buffer[i++] = __$ci_top(); 
 __$ci_done(); 
 enable interrupt 
} 

(a) (b) 
Figure  7.14. (a) send, (b) receive driver code for shared-bus CIs  

 

function input ctrl output 
__$ci_isBusy − − IsBusy 
__$ci_setAddr Addr LoadAddr − 

__$ci_push Data Push − 

__$ci_start − Start −  

function input ctrl output 
__$ci_top − − Data 
__$ci_pop − Pop − 

__$ci_isEmpty − − IsEmpty 
__$ci_done − Done −  

(a) (b) 
Figure  7.15. Pre-bound functions of (a) send, (b) receive CIs for shared bus  

This example shows how synchronous parts of a protocol are implemented in 

hardware, while its asynchronous parts are written in software. The software and 

hardware parts are ultimately integrated with each other through pre-bound functions. 

This approach can be generalized to implement other types of communication interfaces 

as well. These examples also show that without adding low-level programming (Chapter 

 Chapter 5) and interrupt (Chapter  Chapter 6) NISC could not practically implement any 

communication protocol and be integrated in a larger system. In other words, the 

compilation algorithm, the pre-bound functions and variables (low-level programming), 

and interrupt support are the necessary and sufficient features for developing an IP using 

NISC technology and integrating them into systems. 
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Chapter 8. Experiments 

We have developed a complete NISC compiler and have integrated it with the rest of 

NISC toolset. The whole toolset is available for download from NISC Website  [47]. We 

have also developed an online version of the toolset that does not need local installation 

and can be run via web. The experiments presented in this chapter can be run on the 

online version of the toolset as well. 

In this chapter, we present four sets of experiments. To show the generality and 

efficiency of the compilation algorithm, in Section  8.1, we show the compilation and 

simulation results of several benchmarks on several different architectures. In Section 

 8.2, we compare the performance and code size of several benchmarks on a RISC 

processor versus a general-purpose NISC architecture. Then in Section  8.3, we show a 

customization example in NISC technology by selecting one of the benchmarks, namely 

the 2D DCT, and designing different custom datapaths to significantly improve its 

performance and energy consumption. Finally in Section  8.4 we show examples of 

communicating NISC components.  
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8.1 Compiling on different architectures 

To evaluate the efficiency of the proposed compilation algorithm for NISC 

architectures, we compiled and ran a set of benchmarks on the set of generic NISC 

architectures. These architectures include: GN0, which has no pipelining and data 

forwarding (Figure  8.1), GN1, which has pipelining but no data forwarding (Figure  8.2), 

GN2, which has both pipelining and data forwarding (Figure  8.3), and GN3, with a non 

uniform structure (Figure  8.4). In all of these architectures, we used a clocked data 

memory which had pipelined operations. Also, note that the controller pipeline (the path 

from CW port of controller back to its status port) is different in each architecture. Hence 

the compiler must also detect the branch delays to generate correct FSMs. The 

benchmarks include dijkstra, sha, adpcm.coder, adpcm.decoder, qsort and crc32 from 

MiBench (the free version of EEMBC embedded benchmarks available at  [40]), and a 

fixed-point Mp3 decoder (more than 10,000 lines of C code available at  [42]).  

 
Figure  8.1. GN0 with no pipelining or data forwarding 
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Figure  8.2. GN1 with pipelining but no data forwarding 

 
Figure  8.3. GN2 with pipelining and data forwarding 

 
Figure  8.4. GN3 with non uniform structure 
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Table  8.1. Execution and compilation time for various architectures 

 #cycles compilation time (s) 
Benchmark GN0 GN1 GN2 GN3 GN0 GN1 GN2 GN3 

dijkstra - - - 49629 - - - 0.11 
sha 68874 77622 60522 58910 0.20 0.25 0.41 0.23 
adpcm.coder - - - 37890 - - - 0.08 
adpcm.decoder 109518 173830 146214 118350 0.03 0.05 0.06 0.05 
qsort - - - 138496 - - - 0.19 
CRC32 19083 26109 18081 15079 0.02 0.02 0.01 0.02 
FpMp3 - - - 759296 - - - 19.20 

We compiled every benchmark on all possible architectures and generated the RTL 

Verilog codes. We simulated these codes to get both the accurate execution cycle counts, 

and to verify that the simulation outputs exactly match with that of benchmarks running 

on a host PC. Table  8.1 shows the execution and compilation times for each benchmark. 

Some benchmarks that needed a divider could be only compiled on the GN3. These 

experiments showed that the compilation algorithm works correctly and can properly 

utilize different datapath structures. Also, the algorithm is fast enough to be used for 

practical settings.  

8.2 Compilation on a general-purpose NISC 

The main goal of NISC Technology is to enable efficient customizations, which 

requires the NISC cycle-accurate compiler support and handle different types of 

customized architectures. To get a sense of how efficient the compiler can utilize a 

datapath, we compiled and ran the benchmarks on the generic NISC processor shown in 

Figure  8.5, and compared the results with a RISC processor with similar complexity. We 

simulated and synthesized all results to compare their quality. We used Xilinx ISE 8.1 

toolset for simulation and synthesis of the results. As a base for comparison, we chose the 

32-bit Xilinx MicroBlaze soft-core processor. We chose this RISC processor because it is 

a commercial core that is already optimized for Xilinx technology and hence is a good 
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base for comparing our results to its clock frequency, area, and performance. It also 

comes with a complete toolset for compiling programs and cycle-accurate simulation of 

the results. This processor is included in the Xilinx tools as an encrypted soft-core. For 

each benchmark, we validated the output generated by Verilog simulation with the 

corresponding output generated from running that benchmark on a PC desktop. 

 
Figure  8.5. A generic NISC architecture (GN) 

We synthesized MicroBlaze (MB) and a generic NISC (GN) on a Xilinx Virtex4 (90-

nm) FPGA package. The bit-width of control words in GN is 101 bits as opposed to 32-

bit instructions in MicroBlaze. Table  8.2 shows the area and clock frequency of these 

processors. The clock frequency of MicroBlaze is 105MHz, as opposed to 80MHz for 

NISC. In NISC, since the divider unit is pipelined and multiplier is not pipelined, the 

critical path goes through the multiplier. In MicroBlaze, a pipelined multiplier is used 

which improves the clock frequency. The third column of the table shows the area of the 

processors in terms of number of gates. MicroBlaze has more gates than GN, which we 

believe is because of the additional logic for decoding the instructions and controlling the 

pipeline. MicroBlaze core comes with specific fine-grained timing constraints that direct 

the synthesis tool to achieve the highest possible clock frequency. For synthesizing GN 

we only used a general clock constraint and we expect that the clock frequency of NISC 

can be further improved by using more specific constraints.  
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Table  8.2. Area and clock frequency of MicroBlaze and GN 
Processors Clock freq.(MHz) Area (gates) 
MicroBlaze 105 39574 
GN 80 35317 

 
Table  8.3. Comparing MicroBlaze with GN 

 MicroBlaze GN GN vs. MicroBlaze 

Benchmark #cycles code size 
(bits) #cycles code size 

(bits) 
speedup code-size  

ratio 
dijkstra 25,927,532 1,928 10,631,310 3,082 1.86 1.60 
sha 183,030,479 3,156 18,371,827 4,901 7.59 1.55 
adpcm.coder 256,748,693 1,364 84,251,684 2,671 2.32 1.96 
adpcm.decoder 322,766,405 1,956 66,504,319 2,068 3.70 1.06 
CRC32 209,436,647 1,364 26,008,604 1,100 6.14 0.81 
FpMp3 8,861,336 44,620 927,307 70,426 7.28 1.58 

Average 167,795,182 9,065 34,449,175 14,041 4.81 1.43 

Table  8.3 compares MicroBlaze and GN in terms of number of cycles and code size. 

For this experiment, we set the MicroBlaze compiler optimizations to the maximum to 

achieve the maximum performance. MiBench provides a small and a large input for the 

benchmarks as well. For simulating the Mp3 decoder, we used the scope1.mp3 (44.1KHz, 

96kbit/s, stereo) available at  [24]. The reported cycle numbers in Table  8.3 are for 

simulating the small inputs of MiBench benchmarks and processing 1 frame of the Mp3 

file. The second column of Table  8.3 shows number of cycles that it takes for MicroBlaze 

to run each benchmark. The third column shows the size of instruction section (.text) of 

the .elf file generated by the compiler. Similarly, the fourth and fifth columns show the 

number of cycles and code size for GN. The sixth column shows the execution-delay 

ratio of MicroBlaze vs. GN. The execution delay is calculated by diving number of cycles 

by clock frequency of the processor. Although GN runs at a lower clock frequency, it 

runs the benchmarks, on average, 4.8 times faster than MicroBlaze. The last column 

shows the ratio between code size of GN and MicroBlaze. On average, GN consumes 

1.43 times more memory compared to MicroBlaze. 
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These experiments illustrate that even in a general NISC without any application 

specific customizations; we can achieve better performance since the compiler can utilize 

the datapath more efficiently. The results are generated using some code compression 

techniques  [10] that increate the controller pipelining depth and hence the branch delay 

slot. The compression techniques are applied during controller synthesis and are not part 

of this thesis. But the results also show that the compiler can correctly support controller 

pipelining among other features.  

8.3 Custom datapath design for DCT 

In this section, we include an illustrative example that shows the customization 

capability of NISC technology. This example explores the design space for different 

quality metrics such as performance, area, and energy consumption. The step by step 

details of this customization experiment can be found in  [11]. We only include a 

summary of this experiment here for a quick reference and to show that our NISC cycle-

accurate compiler can handle very irregular custom datapaths as well. 

The goal is to design a custom pipelined datapaths for DCT algorithm to further 

improve the performance and power consumption of the design. The definition of 

Discrete Cosine Transform (DCT)  [43] for a 2-D N×N matrix of pixels is as follows: 
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Where u, v are discrete frequency variables (0≤u, v≤N-1), f[i, j] gray level of pixel at 

position (i, j), and F[u,v] coefficients of point (u, v) in spatial frequency. Assuming N=8, 

matrix C is defined as follows: 
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Based on matrix C, an integer matrix C1 is defined as follows: C1 = round( factor × 

C). The C1 matrix is used in calculation of DCT and IDCT: F = C1 × f  × C2, where, C2= 

C1T. As a result, DCT can be calculated using two consecutive matrix multiplications. 

Figure  8.6(a) shows the C code of multiplying two given matrix A and B using three 

nested loops. As a base for comparison and start point for customizations, a NISC-style 

implementation of a MIPS M4K datapath  [41] (called NMIPS) is chosen. The bus-width 

of the datapath is 16-bit for a 16-bit DCT precision, and the datapath does not have any 

integer divider or floating point unit. The clock frequency of 78.3MHz was achieved after 

synthesis and Placement-and-Routing (PAR). Two synthesis optimizations of retiming 

and buffer-to-multiplexer conversions are applied to improve the performance.  

In general, customization of a design involves both software and hardware 

transformations. To increase the parallelism in code, the inner-most loop of the matrix 

multiplication code is unrolled, the two outer loops are merged, and some of the costly 

operations such as addition and multiplication are converted to OR and AND. In DCT, 

the operation conversions are possible because of the special values of the constants and 

variables. The transformed code is shown in Figure  8.6(b). In the next step, a custom 

architecture is designed for the transformed DCT code. This architecture is called 

CDCT1 and is shown in Figure  8.7(a). Several customizations are applied to this initial 

custom architecture to improve the performance, area, and energy consumption. These 

customizations include reducing bit width of components, removing underutilized 

resources, and repeatedly adding registers to break the critical path delay. After each 

customizations, the modified C code of Figure  8.6(b) is compiled on the refined 

architecture. In each step, the results are synthesized and analyzed to figure out what part 
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of datapath can be further customized for more improvements. After seven iterations, the 

final architecture is called CDCT7 as shown in Figure  8.7(b). in this last architecture, the 

multiplier is considered to be a multi-cycle component because in the target FPGA, this 

multiplier is mapped to an ASIC unit that cannot be pipelined or optimized. 

for(int i=0; i<8; i++) 
    for(int j=0; j<8; j++){ 
        sum=0; 
        for(int k=0; k<8; k++) 
            sum= sum+A[i][k]×B[k][j]; 
        C[i][j]= sum;     
    } 

 

ij=0; 
do { 
 i8 = ij & 0xF8; 
 j = ij & 0x7; 
 aL= *(A+(i8|0) ); bL= *(B + (0|j) );  sum =  aL × bL;  
 aL= *(A+(i8|1) ); bL= *(B + (8|j) );  sum+= aL × bL;  
 aL= *(A+(i8|2) ); bL= *(B + (16|j) ); sum+= aL × bL;  
 aL= *(A+(i8|3) ); bL= *(B + (24|j) ); sum+= aL × bL;  
 aL= *(A+(i8|4) ); bL= *(B + (32|j) ); sum+= aL × bL;  
 aL= *(A+(i8|5) ); bL= *(B + (40|j) ); sum+= aL × bL;  
 aL= *(A+(i8|6) ); bL= *(B + (48|j) ); sum+= aL × bL;  
 aL= *(A+(i8|7) ); bL= *(B + (56|j) );  
 *(C + ij) = sum + (aL × bL);  
} while(++ij!=64); 

(a) (b) 
Figure  8.6. (a) Original and (b) Transformed matrix multiplication 
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Figure  8.7. Block diagram of (a) CDCT1, (b) CDCT7 
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Table  8.4 compares the performance, power, energy, and area of the all NISC 

implementations. The third column shows the maximum clock frequency after Placement 

and Routing. The fourth column shows the total execution time of the DCT algorithm 

calculated based on number of cycles and the clock frequency. Note that although in 

some cases (such as CDCT4 and CDCT5) the number of cycles increases, the clock 

frequency improvement compensates for that. As a result, the total execution delay 

maintains a decreasing trend. Column fifth shows the average power consumption of the 

NISC architectures while running the DCT algorithm. All the designs are stimulated with 

the same data values. The power consumption of each design is computed using the 

Xilinx XPower tool and the signal activities collected from Post-Placement and Routing 

simulation. Column sixth shows the total energy consumption calculated by multiplying 

power and execution time. 

Table  8.4. Performance, power, energy, and area of the DCT implementations 

 # Cycles Clock 
freq 

DCT 
exec. time(us) Power (mW) Energy (uJ) Normalized 

area 
NMIPS 10772 78.3 137.57 177.33 24.40 1.00 
CDCT1 3080 85.7 35.94 120.52 4.33 0.81 
CDCT2 2952 90.0 32.80 111.27 3.65 0.71 
CDCT3 2952 114.4 25.80 82.82 2.14 0.40 
CDCT4 3080 147.0 20.95 125.00 2.62 0.46 
CDCT5 3208 169.5 18.93 106.00 2.01 0.43 
CDCT6 3208 171.5 18.71 104.00 1.95 0.34 
CDCT7 3460 250.0 13.84 137.00 1.90 0.35 

Figure  8.8 shows the performance, power, energy and area of the designs normalized 

against NMIPS. The total execution delay of DCT algorithm has a decreasing trend, 

while the power consumption decreases up to CDCT3 and then increases. The energy 

consumption significantly drops at CDCT1, because of the reduction in number of cycles 

and power consumption. From CDCT1 to CDCT7, the energy decreases gradually in a 
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slow paste. As shown in the figure, CDCT7 is the best design in terms of delay and 

energy consumption, while CDCT3 is the best in terms of power, and CDCT6 is the best 

in terms of area. As a result, CDCT3, CDCT6, and CDCT7 are considered the pareto-

optimal solutions. Note that minimum energy and minimum power are achieved by two 

different designs: CDCT7 and CDCT3, respectively. Compared to NMIPS, CDCT7 runs 

10 times faster, consumes 1.3 times less power and 12.8 times less energy. Also, it 

occupies 2.9 times less area than NMIPS. 
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Figure  8.8 Comparing different DCT implementations 

In summary, designing a custom datapath for a given application by properly 

connecting functional units and pipeline registers is the key to reducing number of cycles 

and energy consumption. Also, eliminating the unused logic and interconnects, adjusting 

the bus-width of the datapath to the application requirement, signal gating, and clock 

gating are the key to reducing power consumption. The NISC compiler makes these 

customizations very easy to apply. It allows the designer to modify the component netlist 

of the datapath and then uses the proposed compilation algorithm to automatically map 

the application on the given datapath. 



 119 

8.4 Communicating NISC components 

In this section, we describe the implementation results of two multi-NISC systems 

for a fixed-point Mp3 benchmark downloaded from  [42]. These NISCs communicate via 

the shared bus protocol that we described in Section  7.2.3. In general, an Mp3 audio file 

contains several frames. For a stereo file, each frame has two channels (i.e. left and right 

channels). In the Mp3 decoder, the frames go through three main phases, namely, 

decode_frame, synthesis_frame and output_pcm. Profiling the Mp3 decoder on the 

generic NISC architecture of Figure  8.5 showed that 63% of execution time is spent in 

decode_frame, 25% in synthesis_frame, and 11% in the output_pcm. We realized that 

there are two approaches to parallelize the Mp3 application: (a) processing each channel 

separately, or (b) pipelining the phases. However, the Mp3 decoder was originally 

targeted for desktop PCs and separating the channels completely requires rewriting most 

of the code. Alternatively, we decided to separate the synthesis_frame phase for each 

channel because it required minimum code modifications. Such partitioning can reduce 

the execution time of synthesis_frame to half and hence can at most improve the 

performance by 12.5%. As for the second system, we pipelined the application into two 

stages where the first pipeline stage implements decode_frame phase and the second 

stage implements synthesis_frame and output_pcm phases. In this approach, processing 

delay of one frame is expected to increase due to the communication overhead. However, 

since the decode_frame of one frame is overlapped with the synthesis_frame and 

output_pcm of another frame, the overall performance can be improved by up to 36% 

(=min(63, 25+11)).  
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Table  8.5. Area and clock frequency of MicroBlaze and GN 

Processors Clock freq.(MHz) Area (gates) #cycles for  
1 frame speedup 

MicroBlaze 105 39574 8,861,336 1 
GN 80 35632 897,452 7.28 

multi-core GN 80 73046 - - 

We implemented the Mp3 decoder on a MicroBlaze, a single GN, and two multi-core 

configuration of GN. Table  8.5  shows the clock speed and area of each architecture as 

well as their performance for decoding one frame of audio. For simulating the Mp3 

decoder, we used the scope1.mp3 (44.1KHz, 96kbit/s, stereo) available at  [24]. 

Table  8.6. Throughput of three Mp3 implementations 

Systems #cycles for 
1 frame 

speedup for 
1 frame(%) 

#cycles for 
25 frames 

speedup for  
25 frames (%) frames/sec 

SingleCore 897,452 0.00 22,800,961 0.00 88 
Coprocessor 803,357 10.48 20,205,994 11.38 99 

Pipelined 917,204 -2.20 16,433,655 27.93 122 

Table  8.6 shows the results of implementing the Mp3 decoder in three 

configurations. The second and fourth columns show number of cycles for processing 

one frame, and 25 frames in each configuration and the third and fifth columns show the 

respective speedups. Figure  8.9 shows the block diagram of the three implementation 

configurations. Figure  8.9(a) shows the SingleCore configuration in which the entire Mp3 

decoder runs on one GN. Figure  8.9(b) shows the Coprocessor configuration in which the 

Mp3 decoder runs on two GAs. In this case, one of GN acts as a coprocessor for the main 

GN and runs the synthesis_frame phase for left channel while the main GN runs the same 

phase for the right channel. The main GN also runs the other phases for both channels. 

The total performance improvement in this case is 10.48% which is close to the expected 

12.5%. For each channel, the main GN sends 1152 words to the coprocessor GN and then 

receives 1152 words from it. The communication overhead is responsible for the 2% 

performance loss from the expected upper bound, i.e. 12.5%. Figure  8.9(c) shows the 
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Pipelined configuration, where one GN runs the decode_frame of both channels and 

sends 2×1152 words to the second GN to perform synthesis_frame and output_pcm. In 

this configuration, the processing time for a single frame is increased by 2% but the 

overall throughput of the system is increased by 28%. Similarly, the communication 

overhead is responsible for the 8% performance loss from the expected upper bound, i.e. 

36%. The communication overhead in the Pipelined configuration has increased because 

of the extra synchronization which was not necessary in Coprocessor-Sys configuration. 

 
Figure  8.9. Implementing Mp3 (a) single core, (b) with coprocessor, and (c) pipelined 

According to the Mp3 standard, at least 38 frames must be played per second. 

MicroBlaze can only run 12 frames per second. The last column of Table  8.6 shows the 

throughput of these three NISC based configurations. Clearly, this throughput is much 

more than what the standard required. To save power, the SingleCore and Coprocessor 

configuration can run with half their clock frequency. The clock frequency of the 

Pipelined system can be reduced by two thirds while still meeting the throughput 

constraints of the standard. 
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Chapter 9. Conclusion and 
future work 

In this thesis, we introduced design flow based on No-Instruction-Set-Computer 

(NISC) Technology. In NISC datapath and controller are generated separately. Based on 

the application behavior, the datapath is generated or selected from a database. Then our 

cycle-accurate compiler directly maps a given application on a given datapath. The 

contributions of this thesis can be summarized as follows: 

1. We explained the NISC design flow and explained that it is a better alternative to 

HLS and ASIP for developing custom processing elements. In HLS, designer has 

little control on generated results and changes in the input description (e.g. C) 

cannot be directly correlated to changes in the output RTL. HLS techniques suffer 

from bad output quality and limited application size/complexity support. This is 

mainly because supported target datapaths are very limited and connectivity 

constraints are not considered by HLS techniques. On the other hand, in ASIP, 

finding and implementing custom instructions is very complex. Besides, ASIP is 

not suitable for dedicate custom blocks because they always extend a base 

processor, which imposes a minimum complexity overhead on the results. In 
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NISC, the full datapath (resources and their connectivity) is used for compilation. 

Furthermore, it imposes almost no minimum requirement on the complexity of the 

architecture. In this way NISC can help the designer to achieve a balance between 

designer productivity and design quality. 

2. We presented the details of a NISC architecture and its execution style. The core 

philosophy in designing the architecture was that “we should be able to remove or 

customize anything that is not used by the application from the architecture 

without requiring any changes to the toolset”. Since the compiler depends on the 

internals of the controller, therefore the controller must be kept as simple as 

flexible as possible. The features of the architecture are modeled mainly in the 

datapath and the compiler generates tightly scheduled control bits to control the 

datapath resources in every cycle (hence the name cycle-accurate compiler). We 

presented a modeling approach for capturing and describing the architecture. In 

addition to structural details, this model uses the notion of machine actions (MA) 

to capture timing and to map high level operations such as storage read/write, data 

transfer, or operation execution to low-level hardware resources. We use four 

types of MAs for modeling the architecture: Read, Write, Transfer, and Execute. 

The compiler schedules the MAs in different clock cycles to construct an FSM 

and generate the stream of control words. Compared to previous modeling 

approaches, our model is very conscise and can simultaneously support both 

efficient compilation and efficient RTL generation. While other models could be 

used only for processors, our model can be used for small dedicated IPs as well. 

Additionally, in our model we can consider the actual clock period and 
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component timing in order to accurately support operation chaining and multi-

cycling. Finally, previous models and approaches did not support controller 

pipelining and partial data forwarding. 

3. We presented a compilation algorithm for mapping the CDFG of the program on 

a given datapath model. We showed that in NISC operation scheduling and 

resource binding must be done simultaneously. This is because the connectivity of 

datapath components is predetermined before compilation, and hence during 

scheduling we need to the binding of operations in order to know their delay and 

starting time of their consumer operations. We presented a compilation algorithm 

which is different from HLS techniques because it assumes that the datapath is 

given and is fixed during scheduling and binding. It performs the scheduling and 

binding simultaneously while processing the CDFG backward. It is also different 

from conventional instruction-set based compiler techniques because it directly 

maps the program on a given datapath without using any high-level instruction 

abstraction. Consequently, it must deal with all structural details of the 

architecture and solve more complex problems. This algorithm supports pipelined 

and multi-cycle operations, operation chaining, datapath/controller pipelining, and 

none uniform data forwarding. In previous approach operation pipelining, 

chaining, and multi-cycling could not be supported as efficiently as in our 

approaches because they did not have access to the detailed structural details of 

the architecture. Furthermore, previous approaches did not support controller 

pipelining and non-uniform data forwarding.   
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4. Since NISC has no predefined instruction-set, it also does not have any assembly. 

However, to use it in practical situations it must provide a mechanism for low-

level programming. We solved this problem by adding pre-bound functions and 

variables to the NISC compiler enabling low-level programming in C. These 

functions and variables are mapped directly to the hardware resources by the 

compiler. The pre-bound functions do not have body, are treated as operations, 

and can be similarly scheduled. This is different from intrinsic functions in 

compilers which either have a body, or are only used as compiler directives 

without any effect on the execution of the program. Pre-binding is much more 

flexible and productive than using assembly in the program. The pre-bound 

functions and variables have C syntax and can be easily mixed with the rest of the 

application. Also, they are automatically scheduled on one or more resources by 

the compiler and without user intervention. In contrast, assembly codes cannot be 

mixed with the rest of the program as easily and in the case of statically-scheduled 

architectures (i.e. microcoded and VLIW), they require the programmer to 

explicitly provide the schedule of the operations as well. 

5. NISC has no predefined instruction-set and instead executes the program using 

very tightly coupled statically-scheduled control words generated by the compiler. 

Therefore a NISC component, especially when pipelined, cannot be arbitrarily 

interrupted. We showed that the interrupts can be safely serviced between basic 

blocks in NISC. Our solution included a minimal modification int the contoroller 

as well as adding an interrupt unit to the datapath. When interrupt support is not 

needed, the interrupt unit is removed from datapath and the extra logic in the 
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controller is optimized away during logic optimization. Therefore, our solution 

does not impose any extra overhead on NISC components not requiring interrupt. 

6. We showed compiler algorithm, low-level programming, and interrupt support are 

the necessary and enough features for handling any behavior by NISC. To do so, 

we divide the behavior into a timed behavior that must be implemented by an 

HDL and an un-timed behavior that can be implemented in software (e.g. C). The 

un-timed behavior (software) accesses the timed behavior (hardware) via pre-

binding; and the timed behavior notifies the un-timed behavior about its status via 

interrupt. The compilation algorithm combines all of these into cycle-accurate 

RTL for final implementation. To demonstrate this concept, we illustrated how 

different communication protocols can be added to NISC components. 

Communication protocols typically include a cycle-accurate part which cannot be 

described at behavioral level. Behavioral IP descriptions are preferred for 

increasing designer’s productivity. However, IPs must be easily combined with 

different communication protocols in order to facilitate IP reuse as well as 

communication exploration. Since behavioral IPs are un-timed, it is impossible to 

combine them with the timed description of a communication protocol. The 

proposed approaches in the past either limit the supported types of 

communication interfaces, or require significant language extensions. In this 

thesis, we showed that by dividing the model of a communication protocol into a 

synchronous part that must be timed and an asynchronous part that can be un-

timed, we can easily model and combine both IPs and communication interfaces 

in NISC without limiting the interface or relying on  language extensions.  
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9.1 Future work 

The NISC Technology can provide a much better way of synthesis from high level 

description to RTL. What were presented in this thesis were the basic necessities for 

developing a NISC compiler. The compilation techniques and the NISC toolset can be 

further improved and extended in the following directions: 

• The priorities in the proposed heuristic scheduling algorithm mainly focus on 

performance. An interesting extension is including other parameters such as 

power consumption or thermal behavior in the algorithm. 

• The scheduling algorithm can be further improved to support multiple register 

files or memories. These features are necessary for supporting clustered datapaths, 

which can be implemented more efficiently. Alternatively instead of modifying 

the scheduling algorithm, an external tool can utilize the pre-binding feature of 

the compiler and directly control the partitioning of variables into different 

storages. 

• The NISC compiler can equally benefit from compiler optimization techniques 

that are developed for VLIW processors. Adding such techniques to the compiler 

as well as developing new NISC specific datapath aware code transformations can 

drastically improve the final performance of the design. 

•  NISC potentially provides better parallelism per bit width comparing to a VLIW 

machine with a similar datapath. It is interesting to compare a VLIW RTL 

implementation to that of a NISC with a similar datapath. Since all VLIW 

compiler optimizations are also applicable to NISC, we expect that with a 



 128 

comparable performance, the NISC implementation be more efficient than its 

VLIW counterpart. 

• In this thesis we did not explore datapath generation or customizations. Although 

it can be done manually, but having automatic datapath generation and refinement 

can further improve the designer’s productivity. 

• An interesting research extension is to develop formal techniques that can 

determine whether a given program is compilable on a given datapath. Such 

techniques can provide an excellent guideline for improving the compiler. 

• Embedded applications typically include a lot of operations with constant 

operands. These constants can be effectively utilized for better customization. In 

its current state, the NISC compiler assumes that the control word has one or 

more constant fields with the same bit width. A more flexible technique can 

enable more datapath customization. 

• Many of the techniques developed for ASIP can be applied to NISC as well. the 

algorithms that search for custom instructions, can be used to (a) add custom 

functional units to a NISC datapath, and (b) modify the code and replace the 

corresponding functionalities with proper pre-bound function calls. 
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